DeepSleepNet: 生の単一チャネルEEGに基づく自動睡眠段階スコアリングモデル

深度睡眠ネットワーク:シングルチャネルEEGに基づく自動睡眠ステージスコアリングモデル 背景紹介 睡眠は人体の健康に重要な影響を持ち、人々の睡眠の質を監視することは医学研究および実践において極めて重要です。通常、睡眠専門家は複数の生理信号(脳波図 (EEG)、眼電図 (EOG)、筋電図 (EMG)、心電図 (ECG) など)を分析することで睡眠ステージをスコアリングします。これらの信号は多導睡眠ポリグラフ (Polysomnogram, PSG) と呼ばれ、分類後に個人の睡眠状態を特定するために使用されます。しかし、この手動方法は時間がかかり、労力が必要であり、専門家が複数の夜に渡って複数のセンサーを記録し分析する必要があります。 複数の信号(EEG、EOG、EMG など)やシングルチャネル...

生のEEGを用いたリアルタイム視覚学習者識別のためのディープラーニングベースの評価モデル

在今日の教育環境において、学生の学習スタイルを理解することは、彼らの学習効率を向上させるために極めて重要です。特に視覚学習スタイル(visual learning style)の識別は、教師と学生が教育と学習の過程でより効果的な戦略を取るのに役立ちます。現在、視覚学習スタイルを自動的に識別する主な方法は、脳波(Electroencephalogram, EEG)と機械学習技術に依存しています。しかし、これらの技術は通常、アーティファクトの除去および特徴抽出のためにオフライン処理が必要であり、そのためリアルタイムでの適用が制限されています。 この研究は、Soyiba Jawed、Ibrahima Faye、およびAamir Saeed Malikが《IEEE Transactions on N...

トランスフォーマーベースのアプローチによるディープラーニングネットワークと時空間情報を組み合わせた生EEG分類

研究背景及目的 近年では、脳-コンピュータインタフェース(Brain-Computer Interface、BCI)システムが神経工学および神経科学の分野で広く応用され、脳波(Electroencephalogram、EEG)は中枢神経系の異なるニューロン集団の活動を反映するデータツールとして、これらの分野で重要な研究テーマとなっています。しかし、EEG信号は低空間分解能、高時間分解能、低信号対雑音比、および個体差が大きいという特徴があり、信号処理および正確な分類において大きな課題となっています。特に運動想像(Motor Imagery、MI)というEEG-BCIシステムの一般的なパラダイムにおいて、異なるMIタスクのEEG信号を正確に分類することは、BCIシステムの機能回復およびリハビリテ...

生成セルオートマタを使用した金のキラル形態生成の研究

生成型セルオートマトンを用いた金のキラル形態発生の研究 背景と研究目的 キラリティー(chirality)は自然界に遍在し、特定の分子相互作用や多スケール結合を通じてシステム間で伝播および増幅されることがある。しかし、キラリティー形成のメカニズムや成長過程の主要ステップはまだ完全には理解されていません。本研究では、実験結果に基づく生成型セルオートマトン(cellular automata, CA)人工ニューラルネットワークをトレーニングし、非キラルからキラル形態への金ナノ粒子の識別可能な二つの経路を特定しました。キラリティーは初期段階ではエナンチオマー高指数平面境界での非対称成長の性質によって決定されます。深層学習に基づくキラル形態生成の説明は、理論的理解を提供するだけでなく、未知の交差経路...

Fluidシミュレーションのための注意力ベースのデュアルパイプラインネットワークであるDualFluidNet

背景と研究動機 物理学において、流体の動きを理解することは、我々の環境を理解し、そこにどのように相互作用するかを理解するために不可欠です。しかし、従来の流体シミュレーション方法は高い計算要求のため、実際の応用において限界があります。近年、物理学駆動のニューラルネットワークは、複雑な自然現象を理解するための有望なデータ駆動型方法と見なされています。本論文の著者はスムースパーティクルハイドロダイナミクス(SPH)法に触発され、流体シミュレーションにおける全体制御と物理法則の制約との間のバランスの問題を解決するため、注意機構に基づく二重パイプラインネットワーク構造「DualFluidNet」を提案しました。 論文情報の出典 本論文は西安交通大学ソフトウェア工学学院のYu Chen、Shuai Zh...