医療時系列補完におけるディープラーニングの新しい視点

医療時系列データ補完におけるディープラーニングの新しい視点 ——『How Deep Is Your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation』総説解読 1. 学術的背景と研究動機 医療情報化がますます進展する現代において、電子健康記録(Electronic Health Records、EHR)は臨床判断と医学研究の最も重要なデータソースの一つとなっています。大規模かつ多モーダルな医療データの生成に伴い、データの欠損値(Missing Data)問題が顕在化しつつあり、ますます多くの臨床予測モデルや疾病リスク警告システム、プロセス最適化応用は、時系列データの欠損による深刻な課題...

ACImpute: 制約を強化した平滑化ベースの単一細胞RNAシーケンスデータの補完手法

単細胞RNAシーケンシング(single-cell RNA sequencing, scRNA-seq)技術は、近年、生物学および医学研究において広く応用されています。この技術は、個々の細胞のトランスクリプトーム情報を明らかにし、科学者が細胞の異質性と複雑性をより深く理解するのに役立ちます。しかし、scRNA-seqデータには「ドロップアウトイベント」(dropout events)という普遍的な問題が存在します。これらのイベントにより、多くの遺伝子が単一細胞内でゼロ値として記録されます。これらのゼロ値は2つのカテゴリーに分類されます。1つは「生物学的ゼロ」(biological zeros)で、遺伝子がその細胞内で実際に発現していないことを示します。もう1つは「技術的ゼロ」(technic...