多モダリティトランスフォーマによる膝変形性関節症進行のエンドツーエンド予測

多モーダルTransformerによる膝変形性関節症進行のエンドツーエンド予測 一、学術的背景紹介 膝変形性関節症(Knee Osteoarthritis, KOA)は、世界中で何百万人に影響を及ぼす慢性筋骨格疾患である。KOAは関節軟骨および骨の徐々な変性により、通常慢性的な痛み、関節の固さ、機能制限などの問題を引き起こす。残念ながら、現時点では有効な治療法はなく、早期介入および疾患修飾薬の開発は、KOA進行状況の正確な予測に大きく依存している。したがって、KOAの進行を予測することは、整形外科学および臨床医学分野の重要な未解決課題となっている。 KOAの進行は非常に多様で、患者間での症状や病態発現メカニズムに顕著な差異があり、精度の高い予測は非常に困難である。従来の臨床では主に放射線画像...

データ制約環境における骨シンチグラフィ画像の生成と深層学習モデル一般化の向上を可能にする生成型AI

核医学における生成的人工知能の画期的応用:合成骨スキャン画像の可能性と深層学習への応用 背景と研究課題 近年、人工知能(Artificial Intelligence, AI)の急速な発展は、医用画像解析に革新をもたらしました。例えば、深層ニューラルネットワーク(Deep Neural Network)は、疾患診断、解剖学的構造のセグメンテーション、患者予後の予測および治療反応の評価といった分野で大きな可能性を示しています。しかし、これらの技術の広範な応用は、通常、膨大で正確にラベル付けされたデータセットに依存しています。しかし、医療分野では、このような大規模なラベル付きデータを収集することは費用がかかり、時間もかかる上、患者のプライバシー保護のためにデータ共有が厳しく制限されるため、データ...

放射線画像解釈における多モーダル大規模言語モデルの精度評価

大規模言語モデルの放射線画像解釈における性能:人間の読者との比較研究 学術的背景 近年、大規模言語モデル(Large Language Models, LLMs)は、特に自然言語処理の分野で強力な能力を発揮しています。マルチモーダルLLMsの発展により、これらのモデルはテキストだけでなく、音声、視覚、ビデオなど多様な入力形式を処理できるようになりました。代表的なマルチモーダルLLMsには、OpenAIのGPT-4 Turbo with Vision(GPT-4V)、Google DeepMindのGemini 1.5 Pro、そしてAnthropicのClaude 3があります。これらのモデルは、放射線学分野での応用も増えており、特に放射線レポートの生成や構造化において優れた性能を示していま...