深層学習による12誘導心電図分類における診断基準に類似した学習特徴の解析

心電図自動診断における深層学習の説明性研究 ― Explainable AI に基づく進展の総括 1. 学術的背景と問題提起 心電図(Electrocardiogram, ECG)は、心疾患を診断するための重要な生体信号取得手段として、今日まで百年以上にわたり用いられてきました。近年、人工知能(Artificial Intelligence, AI)および深層学習(Deep Neural Networks, DNNs)技術の急速な発展により、データ駆動型の自動診断アルゴリズムは心電図分野で卓越した性能を発揮し、とりわけ不整脈などの複雑な異常検出において従来法を大きく上回っています。深層学習モデルは信号特徴を自動で学習・抽出できるため、ECG自動解読および診断支援システムの進歩を大きく後押しし...

空間的特徴重要度の観点から分布外検出をブーストする

空間的特徴の重要性から分布外検出性能を向上させる研究 研究背景と問題提起 ディープラーニングモデルの実際の応用において、未知のクラスの入力に対して信頼性高く予測を拒否することは、システムの安全性と堅牢性を確保するための鍵となります。このニーズは、分布外検出(Out-of-Distribution Detection, OOD Detection)という研究分野を生み出しました。OOD検出は、モデルの訓練データ分布範囲内のサンプル(つまり、分布内サンプル、In-Distribution, ID)とその範囲を超えるサンプル(つまり、分布外サンプル、Out-of-Distribution)を区別することを目指しています。近年、研究者たちはMSP(Maximum Softmax Probabilit...