基于知识图谱的社交增强可解释推荐

基于知识图谱的社交增强可解释推荐系统 引言 随着互联网世界信息量的不断增加,用户和商品的相关信息也迅速扩展,导致信息过载问题日益严重。推荐系统通过为用户推荐少量符合其偏好的商品,能够有效缓解这一问题,不仅能帮助用户迅速获取感兴趣的内容,还能帮助企业实现精准营销,提升客户忠诚度。在电子商务、社交媒体和搜索引擎等多种平台上,推荐系统扮演着越来越重要的角色。 推荐系统的性能高度依赖于推荐技术。早期的协同过滤(Collaborative Filtering, CF)方法通过推荐与用户曾经互动过的物品相似的其他物品来实现推荐。然而,当用户与物品之间的互动稀疏时,CF方法效果不佳。为了解决这一限制,各种辅助信息如物品属性、用户信息和上下文被整合到模型中。尤其是,当侧信息被转化为特征向量并与用户和物品ID...

基于多重关系图注意网络的知识图谱实体类型连接嵌入

连接嵌入基于多重关系图注意力网络用于知识图谱实体类型识别 研究背景 当今,知识图谱(Knowledge Graphs, KGs)在各种基于KG驱动的AI相关领域中引起了越来越多的研究兴趣。大规模的知识图谱提供了丰富而有效的结构化信息,是多个智能应用的核心数据资源,如问答系统和网页搜索。通常,知识图谱中包含大量实体类型(Entity Typing)实例,以元组 ((e, t)) 的形式存在,其中 (e) 是实体,(t) 是其层次型类型。尽管现代知识图谱(如Freebase, YAGO和Google Knowledge Graph)取得了很大成功,但它们的覆盖范围仍远未完全和全面。例如,在FB15k数据集中,10%的具有/music/artist类型的实体没有/people/person类型。 ...

将大型语言模型和知识图谱统一起来

统一大语言模型与知识图谱 背景 近年来,自然语言处理和人工智能领域涌现了大量研究成果,其中,大语言模型(Large Language Models, LLMS)如 ChatGPT 和 GPT-4 表现出色。然而,尽管这些模型具有出色的泛化能力,常常因其黑箱性质无法有效捕捉和访问事实知识而受到批评。另一方面,知识图谱(Knowledge Graphs, KGs)如 Wikipedia 和 Huapu 通过结构化形式存储了大量事实知识,但构建和演化知识图谱的过程却非常复杂。因此,研究人员提出将大语言模型与知识图谱相结合,利用两者的优势以实现互补。 来源 本文发表在《IEEE Transactions on Knowledge and Data Engineering》2024年7月第36卷第7期...

基于图的非抽样策略增强知识图谱推荐系统

基于图的非抽样策略增强知识图谱推荐系统

基于图的无采样知识图谱增强推荐 近年来,知识图谱(Knowledge Graph, KG)增强推荐系统,旨在解决冷启动问题和推荐系统的可解释性,已经吸引了大量的研究兴趣。现有的推荐系统通常侧重于隐式反馈,如购买历史记录,但缺乏负反馈。大多数系统采用负采样策略处理隐式反馈数据,这可能忽略了潜在的正用户-项目交互。而其他一些工作则采用无采样策略,将所有未观察到的交互视为负样本,并为每个负样本分配权重,以表示该样本为正样本的概率。然而,这些方法使用简单直观的权重分配策略,不能捕捉所有交互数据中的潜在关系。 研究背景与动机 随着互联网的快速发展,信息超载的问题日益严重。为了提高用户的搜索体验并增加产品供应商的收入,推荐系统应运而生,并在电子商务、社交网络等多个应用中取得了巨大成功。近年来,作为内容信...

推荐系统中基于知识图谱的上下文图注意力网络

基于知识图谱的推荐系统:Contextualized Graph Attention Network 近年来,随着在线信息和内容的爆炸式增长,推荐系统在电子商务网站和社交媒体平台等各种场景中变得越来越重要。这些系统通常旨在为用户提供她可能感兴趣的项目列表。然而,传统的基于用户行为数据的方法(例如协同过滤、深度学习)面临着数据稀疏性和冷启动问题。为了解决这些问题,研究者尝试将各种辅助信息 (side information) 融入到推荐系统中,其中包含用户的社交网络、评论文本等。 研究背景 在这些辅助信息中,项目知识图谱(Knowledge Graph, KG)包含丰富的项目间关系,并已被证明可以显著提高推荐系统的性能。知识图谱本质上是一个异构网络,其中节点代表实体,边代表关系。然而,如何将这...