DeepRNA-Twist:基于语言模型引导的RNA扭转角预测与注意力-初始网络

一、学术背景及研究动机 随着生命科学与生物信息学的飞速发展,RNA分子结构及其功能研究成为热点领域。RNA不仅仅是基因信息的传递者,更在调控、催化等多种生理过程中扮演关键角色。RNA分子的三维结构直接影响其生物学功能,而RNA结构的精确解析对于基础科学、药物设计、疾病机制研究等均具有重要意义。然而,RNA的序列到结构转换远比蛋白质复杂,不仅因为RNA的骨架有七个主链扭转角(α, β, γ, δ, ε, ζ, χ),而且还涉及复杂的伪扭转角(η, θ),加之非经典碱基对、多重环、三元作用等多样结构因素,使得高精度RNA三维结构预测极具挑战性。 传统的实验测定RNA结构方法如核磁共振(NMR)、X射线晶体学(X-ray crystallography)、冷冻电镜(cryo-EM)手段,不但昂贵且...

揭秘三维基因组预测新引擎:CHROMBUS-XMBD——图卷积模型驱动的染色质互作预测

研究背景与学科意义 在真核细胞内,染色质(Chromatin)的三维空间结构对于基因表达调控有着至关重要的作用。DNA通过复杂的折叠、环化及局部空间重构,使不同基因元件(如启动子promoter、增强子enhancer等)在空间上变得邻近,并实现精细的顺式(cis)调控。近年来,无论在发育生物学、疾病机理还是表观遗传学研究中,三维基因组(3D-genome)的动态结构都被反复证明与基因表达变化密切相关。 当前,捕捉基因组空间构象的实验方法主要包括3C、4C、5C、Hi-C、ChIA-PET、HiChIP等。然而,这些实验方法成本高昂、操作复杂,且常常受到生物材料来源、分辨率及信噪比等条件限制,难以为多样化的生物学问题或疾病研究大规模提供数据。与此同时,随着多组学数据的积累,尤其是DNA序列、...

基于矩阵补全的集成学习提高微生物-疾病关联预测

学术背景与研究问题 微生物作为地球上最广泛存在的生命形式之一,与海洋、土壤以及人类自身均有密切关系。人体内约含有350万亿个微生物细胞(microbial cells),与人类健康、疾病的发生和发展息息相关。近年来,随着测序技术与生物信息学的快速进步,大量研究聚焦于阐明人体微生态(microbiome)组成及其功能对健康产生的影响。例如,肠道菌群组成的变化能够影响机体免疫和疾病发生,肝脏代谢也被证实受肠道微生物调控,会通过降低能量消耗、促进脂肪沉积等促进代谢疾病发展。 尽管实验生物医学对微生物-疾病(microbe-disease)关联的揭示已做出巨大努力,但已被实验确定的疾病相关微生物数量仍十分有限,传统实验方法既耗时又高成本,因此亟需高效、精准的计算方法,用于筛查潜在的微生物-疾病关联。...

蛋白质-蛋白质互作预测的新进展:HSSPPI模型从分层与空间-序列双视角全面解析蛋白互作位点

背景介绍:揭示蛋白互作预测的瓶颈与机遇 蛋白质(Protein)作为生命活动的核心分子,几乎参与了所有生物学过程与细胞功能,包括基因表达、RNA转录、DNA合成以及免疫反应等。蛋白分子之间的相互作用(Protein-Protein Interactions, PPI)以及特定位点上的互动(Protein-Protein Interaction Sites, PPIS)决定了多样且精确的生理活动。例如,药物设计、蛋白功能注释、疾病分子机制探索、以及全局蛋白互作网络构建等,都以高质量的PPI和PPIS信息为基础。 然而,传统基于生物实验(如X射线晶体学、质谱等)对PPI位点进行检测的方法耗时高、成本昂贵,并且面临样品复杂性高和可扩展性不足的问题。随着蛋白数据库的快速扩充及疾病防治需求的日益迫切,...

MAEST:基于图掩码自编码器的空间转录组学中的精确空间域检测

空间转录组学——解析组织空间异质性的前沿技术 空间转录组学(Spatial Transcriptomics, ST)是一项近年来蓬勃发展的测序技术,其核心在于能够在组织切片层面,兼顾基因表达与空间位置信息,为揭示多细胞生物组织的空间结构、功能分区及疾病微环境提供了前所未有的数据基础。随着10x Visium、Slide-seq、Stereo-seq、seqFISH和MERFISH等平台技术的逐步成熟,科学家得以获得高分辨率、空间可追溯的大规模基因表达数据,极大推动了发育生物学、神经科学及肿瘤生物学等领域的进步。 空间结构域识别(Spatial Domain Identification)则是空间转录组数据分析中的核心环节。其目标是将表达模式相近、地理位置相邻的细胞点(Spot)分为具有生物学...

深度学习加持的蛋白质复合物界面质量评估:TopoQA顶点——在蛋白质结构精准预测新时代下的创新突破

学术背景 蛋白质复合物三维结构的解析是现代结构生物学、分子机理研究、药物设计乃至于人工蛋白质设计等领域的核心课题。蛋白质的功能往往由其结构所决定,而众多生物过程涉及蛋白质间复杂的相互作用。虽然传统的实验手段(如X射线晶体学、冷冻电镜、NMR等)虽能解析蛋白质的三维结构,但耗时繁琐、成本高昂,难以满足高通量或大规模研究需求。近年来,数据驱动的蛋白质结构预测方法(如AlphaFold、RoseTTAFold等)取得了革命性突破,尤其是在单体蛋白模型的准确度方面甚至能够媲美实验结构。然而,蛋白质复合物结构预测的准确度仍未达到单体预测的高度,特别是在多聚体与抗体-抗原等复杂体系中,仍有巨大的提升空间。 在实际应用中,研究者往往需要从机器学习或深度学习模型产生的大量“候选结构”(decoys)中筛选出...

基于Granger因果循环自编码器的时间序列单细胞RNA测序数据推断基因调控网络

一、学术背景与研究动机 近年来,单细胞RNA测序(single-cell RNA sequencing, scRNA-seq)已成为生命科学与医学研究领域极具突破力的技术之一,使得研究者能够以单个细胞为单位,捕捉到众多细胞间转录水平的微妙差异。这项技术极大地丰富了细胞生物学,对理解细胞分化、发育和疾病发生机制具有重要意义。基于scRNA-seq数据,推断基因调控网络(gene regulatory networks, GRNs),进而揭示转录因子与靶基因间复杂的调控关系,已成为当前生物信息学和系统生物学中的关键问题之一。 然而,scRNA-seq数据本身具有高噪声、高稀疏性和“掉落事件”(dropout events)等特点,带来了极大的数据分析挑战。尤其是在分析时间序列单细胞数据(time...

基于图神经网络的Cox比例风险模型增强及其在癌症预后中的应用

一、研究背景与学科前沿 癌症预后分析一直是医学领域的核心研究方向。近年来,随着高通量测序技术(high-throughput sequencing technologies)的广泛应用,科学家们得以深入探索癌症患者的分子生物标志物(biomarker)和临床特征,从而帮助临床医生更准确地评估患者的生存风险,制定个体化治疗策略。传统的 Cox 比例风险模型(Cox proportional hazards model)作为经典的生存分析工具,因其优秀的统计基础和适应性而被广泛应用于癌症预后研究。 然而,随着深度学习(Deep Learning, DL)以及多组学(omics)数据的引入,科学家们逐步认识到传统 Cox 模型在特征提取和复杂关系建模方面的不足。许多基于深度学习的方法往往侧重于特征...

模块响应分析的测试与局限性克服

研究背景:网络推断新挑战 在现代分子生物学和系统生物学领域,对生物分子网络(如基因调控网络、蛋白质互作网络、信号传导网络等)的精准解析被视为理解细胞生命活动、疾病发病机制和药物作用机理的核心。然而,这些生物网络极为复杂,普遍存在节点众多、连接关系错综、非线性动态强烈以及实验测量噪音大的难题。作者们正是在这样的大背景下,选择聚焦于“模块响应分析(Modular Response Analysis, MRA)”方法。MRA是一类基于对系统节点施加扰动,并分析扰动响应以推断模块间相互作用的经典方法,尤其适用于节点可以灵活定义为“基因、蛋白质、代谢物或蛋白复合体等多尺度结构单元(模块)”的网络解析。 尽管MRA长期以来在中小规模网络解析、稳态扰动数据分析等方面被广泛应用,并见证了算法层面的多种优化,...

随机森林变量选择方法在连续结果回归建模中的比较

背景介绍:变量选择在机器学习回归模型中的重要性 近年来,机器学习在生物信息学与数据科学领域的广泛应用极大推动了预测建模的发展。随机森林(Random Forest, RF)回归作为常用的集成学习算法,因其能有效提升预测准确性和模型稳健性,成为建构连续型结局预测模型的重要工具。然而,面对高维数据,模型中的预测变量越多,并不一定意味着预测性能的提升,反而可能导致信息冗余、模型过拟合,或影响实际应用的便利性。因此,“变量选择(Variable Selection/Feature Selection/Feature Reduction)”成为极为关键的建模步骤。 变量选择不仅能够减少变量冗余、提升预测性能和模型泛化能力,还能降低后续数据收集及模型部署的成本,提高模型的解释性与应用效率。以往学者提出了...