AI強化肺癌予測:ハイブリッドモデルの精密な成功

背景紹介 肺癌(lung cancer)は世界的に発症率および死亡率が非常に高い悪性腫瘍の1つとして、現代医療分野で依然として多くの課題に直面しています。文献によれば、肺癌患者の5年生存率は極めて低く、長年にわたり世界の癌死亡数上位3位にランクされています。肺癌の初期症状は隠れやすく、多くの患者が病気の進行期に初めて診断されるため、最適な治療のタイミングを逃してしまいます。肺癌に効果的に対応する鍵は、早期診断の実現にあります。しかしながら、従来の臨床診断手段——例えば胸部画像診断や病理診断——は操作が煩雑であり、高精度の器機や医師の経験への依存などの課題があり、タイムリーかつ正確で広範囲の早期スクリーニングを実現するのは困難です。 近年、人工知能(AI, Artificial Intelli...

EHR-HGCN: 電子カルテにおける異種グラフ畳み込みネットワークを使用したテキスト分類のための強化ハイブリッドアプローチ

EHR-HGCN: 電子カルテにおける異種グラフ畳み込みネットワークを使用したテキスト分類のための強化ハイブリッドアプローチ

EHR-HGCN:電子健康記録テキスト分類の新しいハイブリッド異種グラフ畳み込みネットワーク方法 学術的背景紹介 自然言語処理(NLP)の急速な発展に伴い、テキスト分類はこの分野の重要な研究方向の一つとなりました。テキスト分類は、文献の背後にある知識を理解するのを助けるだけでなく、生物医学テキスト、特に電子健康記録(Electronic Health Records, EHR)などの分野でも広く応用されています。既存の研究は主に双方向トランスフォーマーに基づくエンコード表現方法(BERTなど)や畳み込みニューラルネットワーク(CNN)を利用した深層学習方法に集中しています。しかし、これらの方法は医学長文の処理時に入力長さの制限や高い計算資源の需要に直面することが多いです。また、テキスト分類の...

事前訓練された言語モデルの抑制適応

InA: 事前学習言語モデルにおける抑制適応方法 事前学習言語モデル(Language Models, LMs)は自然言語処理(Natural Language Processing, NLP)タスクにおいて顕著な効果をあげている。しかし、従来のファインチューニング方法には冗長なパラメータの問題があり、効率と効果に影響を与えている。この挑戦に対応するために、本論文では抑制適応(Inhibition Adaptation, INA)と呼ばれるファインチューニング方法を提案し、追加される調整可能な重みを減らし、事前学習言語モデルからの知識を適切に再重み付けする。 研究の背景と問題 現在、事前学習言語モデルのファインチューニングはNLPの下流タスクを解決する一般的な方法である。しかし、古典的なファ...