慢性疾患予防のための多クラス反事実的説明の推定と適合性評価

一、学術的背景および研究動機 近年、人工知能(Artificial Intelligence, AI)は医療健康分野で大きな進展を遂げています。初期の診断補助、リスク予測から個別化された介入提案まで、AIは医療サービスの質と効率を向上させる重要なツールとなっています。しかし、AIの臨床応用には多くの課題が残されており、その中でも特に顕著なのがモデルの説明可能性(Explainability)と信頼性(Trustworthiness)です。AI システムが臨床意思決定支援(Clinical Decision Support Systems, CDSS)に用いられる際、医療従事者や患者はAIがどのように推論を行ったのか、その推論が既存の医学知識と合致しているか、いわゆる「ブラックボックス」ではな...