CellMincerを使用した電圧イメージングデータのロバストな自己教師付きノイズ除去

学術的背景 電圧イメージング(voltage imaging)は、神経活動を研究するための強力な技術ですが、その有効性は低い信号対雑音比(SNR)によって制限されることが多いです。従来のノイズ除去方法、例えば行列分解は、ノイズと信号構造について厳密な仮定を課しますが、既存の深層学習アプローチは、電圧イメージングデータに固有の高速なダイナミクスと複雑な依存関係を完全に捉えることができませんでした。これらの問題を解決するために、本論文ではCellMincerという新しい自己教師あり深層学習手法を提案し、電圧イメージングデータセットのノイズ除去に特化しています。CellMincerは、短時間ウィンドウ内のスパースなピクセルセットをマスクして予測し、事前計算された時空間自己相関を組み合わせることで、...

深層学習による拡散モデルの最適化

深層学習による拡散モデルの最適化

Dimond: 深層学習による拡散モデルの最適化に関する研究 学術的背景 脳科学および臨床応用において、拡散磁気共鳴イメージング(Diffusion Magnetic Resonance Imaging, dMRI)は、非侵襲的に脳組織の微細構造や神経連結性を描くための重要なツールです。しかし、拡散信号モデルのパラメーターを正確に推定する計算コストは高く、画像ノイズの影響を受けやすいです。既存の多くの深層学習に基づく教師あり推定法は、効率と性能の向上の可能性を示していますが、これらの方法は通常追加のトレーニングデータを必要とし、汎化性が不足しているという問題があります。 論文の出典 この研究はZihan Li、Ziyu Li、Berkin Bilgic、Hong-Hsi Lee、Kui Yi...

幾何増強事前学習による原子間ポテンシャルへの応用

原子間相互作用力の幾何強化事前トレーニング はじめに 分子動力学(MD)シミュレーションは、物理学、化学、生物学、材料科学などの分野で重要な役割を果たし、原子レベルのプロセスの洞察を提供しています。MDシミュレーションの精度と効率は、分子系の原子間相互作用を記述する原子間ポテンシャル関数に依存しています。古典的MDでは経験式を使用し、パラメータを当てはめる必要がありますが、計算コストは低いものの精度が不十分です。一方、第一原理MDでは、シュレーディンガー方程式を解くことで精密な相互作用を得ることができますが、計算量が非常に大きくなります。そこで、機械学習による原子間ポテンシャル(MLIPs)が、第一原理計算から得られるエネルギーと力をフィッティングすることで、ab initio精度に近づきつ...