深度学习模型用于12导联ECG分类中的特征分析与可解释性研究

深度学习在心电图自动诊断解释性研究 ——基于Explainable AI的进展综述 一、学术背景与问题提出 心电图(Electrocardiogram, ECG)作为临床诊断心脏疾病的重要生理信号采集手段,至今已有百年历史。近年来,随着人工智能(Artificial Intelligence, AI)和深度学习(Deep Neural Networks, DNNs)技术的快速发展,基于数据驱动的自动诊断算法在心电图领域获得了卓越的性能,尤其在心律失常等复杂异常识别上显著优于传统方法。深度学习模型通过自动学习和提取信号特征,极大地推动了心电图自动解读和辅助诊断系统的进步。 然而,这类黑箱性质的算法在实际临床应用中的推广仍然受限,最核心障碍之一正是缺乏可解释性(Explainability)。尽...

慢性疾病预防的多类别反事实解释估算与一致性评估

一、学术背景与研究动机 近年来,人工智能(Artificial Intelligence, AI)在医疗健康领域取得了巨大进展。从最初的辅助诊断、风险预测到个性化干预方案的推荐,AI已成为改善医疗服务质量和效率的重要工具。然而,AI在临床实际应用中仍面临诸多挑战,最突出的问题之一是模型的可解释性(Explainability)与可信度(Trustworthiness)。当AI系统被用于临床决策支持(Clinical Decision Support Systems, CDSS)时,医务人员和患者都迫切希望能“看懂”AI如何做出推断,以及这些推断是否符合现有医学知识而不是黑盒输出。缺乏透明度不仅限制了AI工具的推广,也影响了医生的信任与接受度,进而影响到患者的安全和健康结果。 为弥补这一缺陷,...