知識グラフ補完のための深い関係グラフインフォマックス(DRGI)

知识グラフ(Knowledge Graph, KG)埋め込み技術は人工知能分野における重要な研究課題であり、主に知識の取得と知識グラフの拡張に使用されます。近年、多くのグラフ埋め込みに基づく手法が提案されていますが、これらの手法は通常、知識グラフの意味情報にのみ注目し、グラフの自然な構造情報を無視しています。そのため、グラフ畳み込みネットワーク(Graph Convolutional Networks, GCN)手法が一部の構造情報を捉えることができても、知識グラフの不完全性のために依然として情報不足の問題に直面しています。この問題を克服するために、本研究では新たなモデルである深層関係グラフ情報利得(Deep Relational Graph Infomax, DRGI)を提案し、相互情報量...

人工知能を用いた乳腺病変の分類:多施設共同研究

人工知能に基づく乳房病変の分類に関する多施設研究 乳がん領域では、早期診断は治療効果と生存率の向上に不可欠です。乳がんは、非浸潤がん(原発性がん)と浸潤がんの2種類に大別されます。これらの2つのタイプのがんでは、治療戦略と予後が大きく異なります。非浸潤がんではリンパ節転移のリスクが低い(1-2%)ため、センチネルリンパ節生検(SLNB)は推奨されません。一方、浸潤がんの場合、SLNBまたは腋窩リンパ節郭清(ALND)が必要です。したがって、術前に良性、悪性、非浸潤がん、浸潤がんを正確に区別することが非常に重要です。 コントラスト強調乳房撮影(CEM)は、腫瘍の血管特性を描出できる新しい技術で、臨床応用が広がっています。しかし、CEMは乳がんの診断では悪性病変に対する感度は高いものの、特異度は...

术後定位放射線療法による脳転移患者の局所制御の放射線学に基づく予測

脳転移患者の術後ステレオタクティック放射線療法局所制御予測における放射線機能解析の応用 学術背景 脳転移(Brain Metastases, BMs)は最も一般的な悪性脳腫瘍で、その発症率は原発性脳腫瘍(例えば膠芽腫)を大きく上回ります。最近の医療ガイドラインは、症状が顕著または大きな脳転移患者に対して手術治療を推奨しています。局所制御率を向上させるために、一または二つの切除されたBMs患者に対して切除腔のステレオタクティック放射線療法(Stereotactic Radiotherapy, SRT)を推奨しており、この方法により術後12ヶ月内に70%から90%の局所制御率が達成できます。しかし、補助SRT後でも局所失敗(Local Failure, LF)のリスクは依然として存在し、これが高...

個別化した猫の脊髄刺激モデリングのための新しいCNNベースの画像セグメンテーションパイプライン

卷積ニューラルネットワーク(CNN)に基づく画像分割パイプラインを用いた個体化された猫の脊髄刺激モデリング 背景と研究動機 脊髓刺激(Spinal Cord Stimulation, SCS)は、慢性疼痛管理に広く使用されている治療法です。近年、SCは神経活動を調節し、失われた自律または感覚運動機能を回復させるためにも使用されています。個別化されたモデリングと治療計画は、SCを安全かつ効果的に行うための重要な側面です。しかし、必要な詳細さと精度のあるスパイン模型の生成には、人間の専門家による時間のかかる手動の画像分割が必要となります。したがって、限られたデータでも高品質の解剖学的モデルを生成できるよう、自動化された分割アルゴリズムが切実に求められています。 論文の出典 本論文は、Alessa...

触覚知覚:臨床胃腸疾患スクリーニングのための生体模倣ヒゲベースの方法

バイオインスパイヤー人工触角法に基づく臨床胃腸疾患スクリーニング 研究背景 胃腸疾患は、下痢、胃腸道出血、吸収不良、栄養不良、さらには神経機能障害など、世界中で広範で複雑な症状を示しています。これらの疾患はその顕著な地域、年齢、および性別の差異のため、現代社会にとって重大な健康課題および社会経済的負担を構成しており、特に胃腸道がんは、世界のがん発病率および死亡率の3分の1を占めています。早期に胃腸疾患をスクリーニングし、タイムリーな介入を行うことは、死亡率を減少させ寿命を延ばす上で重要な意義を持ちます。 従来の胃腸疾患スクリーニング方法は主に内視鏡検査に依存しており、カメラを搭載した柔軟な内視鏡を使用して天然開口部から胃腸道を検査しています。しかし、内視鏡検査は病院で広く使用されているものの...