深層学習における損失関数と性能指標の包括的調査

ディープラーニング(Deep Learning)は、人工知能分野の重要な一分野として、近年コンピュータビジョンや自然言語処理など多くの分野で顕著な進展を遂げています。しかし、ディープラーニングの成功は、損失関数(Loss Function)と性能指標(Performance Metrics)の選択に大きく依存しています。損失関数は、モデルの予測と真の値との差異を測定し、モデルの最適化プロセスを導くために使用されます。一方、性能指標は、未見のデータに対するモデルの性能を評価するために使用されます。損失関数と性能指標はディープラーニングにおいて極めて重要ですが、多くの選択肢があるため、研究者や実務者は特定のタスクに最適な方法を決定することが難しいことがしばしばあります。 このため、本稿では、ディ...

WoTにおけるセキュリティ脅威の検出における課題:系統的文献レビュー

インターネット・オブ・シングス(Internet of Things, IoT)とWeb of Things(Wot)の急速な発展に伴い、セキュリティ問題が顕在化しています。特に、サービス拒否攻撃(Denial of Service, DoS)の頻発により、Wotシステムの安全性は緊急の課題となっています。Wotは、IoTデバイスをWeb技術と統合することで、デバイスとインターネットのシームレスな接続を実現していますが、これにより新たなセキュリティ上の課題も生じています。Wotデバイスの異種性と開放性のため、従来のセキュリティメカニズムでは複雑な攻撃シナリオに対応することが困難です。したがって、本論文では、システマティック・レビュー(Systematic Literature Review,...

深層学習に基づくマルチモーダルデータ統合による乳がん無病生存予測の向上

乳がんは世界の女性の中で最も一般的な悪性腫瘍の一つです。早期介入と適切な治療により、患者の生存率は大幅に向上しましたが、依然として約30%の症例が再発し、遠隔転移を起こし、5年生存率は23%以下となっています。従来の臨床予測方法、例えばバイオマーカー、臨床画像、分子検査などは一定の価値を持っていますが、感度が低く、コストが高く、利用可能性が限られており、患者内の異質性などの問題もあります。そのため、術後乳がん患者の再発リスクと生存率を正確に予測し、タイムリーな介入と全体的な予後改善を可能にする新しい方法の開発が、現在の研究における緊急の課題となっています。 近年、人工知能(AI)技術の急速な発展により、乳がんの予後予測に新たな可能性がもたらされています。ディープラーニングは強力なAI技術とし...

非コードRNAの分類とクラス注釈のための多モーダル解釈可能表現

非コードRNA(ncRNA)は、細胞プロセスや疾患の発症において重要な役割を果たしています。ゲノムシーケンシングプロジェクトによって大量の非コード遺伝子が明らかになりましたが、ncRNAの機能と分類は依然として複雑で挑戦的な問題です。ncRNAの多様性、複雑性、および機能性は、バイオマーカーや治療ターゲットの発見において、特に生物医学研究の重要な対象となっています。しかし、既存のncRNA分類ツールの多くは、単一または2種類のデータタイプ(例えば配列や二次構造)に依存しており、他の重要な情報源を無視しています。さらに、既存の手法は解釈可能性に欠けることが多く、異なるncRNAクラスの特徴を明らかにするのが困難です。 これらの問題を解決するため、Université Paris-Saclayと...

Transformerモデルを用いたDNA配列アラインメントの研究

学術的背景 DNAシーケンスアラインメントは、ゲノム解析における中心的な課題であり、短いDNA断片(リード)を参照ゲノム上の最も可能性の高い位置にマッピングすることを目的としています。従来の方法は通常、2つのステップに分かれています。まずゲノムをインデックス化し、次に効率的な検索を行ってリードの可能性のある位置を特定します。しかし、ゲノムデータの爆発的な増加、特に数十億塩基対の参照ゲノムを扱う場合、従来のアラインメント方法は計算効率と精度の面で大きな課題に直面しています。近年、Transformerモデルが自然言語処理(NLP)分野で成功を収めたことから、研究者はこれをDNAシーケンス解析に応用しようとしています。これまでの研究では、Transformerモデルが短いDNAシーケンスの分類タ...