自己教師あり深層学習を用いたクライオ電子顕微鏡における優先配向問題の克服

単粒子冷凍電子顕微鏡における優先配向問題の克服:深層学習による革新的解決法 背景紹介 近年、単粒子冷凍電子顕微鏡(Single-Particle Cryo-EM)技術は、生体高分子を天然状態に近い条件下で原子分解能で解析できることから、構造生物学のコア技術として確立されました。しかし、実際の応用では、「優先配向」(Preferred Orientation)という技術的な壁に直面することが多いです。この問題の主な原因は、生体分子が冷凍電子顕微鏡のグリッド上で均等に分布せず、特定の方向のデータ収集が不十分になることです。この配向偏差は通常、試料調製プロセス中に分子が空気-水界面(Air-Water Interface, AWI)またはサポート膜-水界面との相互作用によって引き起こされます。 優...

多スケールフットプリントが明らかにするシス調節要素の組織

多スケールフットプリントが細胞分化と老化におけるシス調節要素の役割を明らかにする 背景紹介 遺伝子発現の調節は、細胞の運命と疾患発生の鍵となるメカニズムの一つであり、シス調節要素(cis-regulatory elements, CREs)がこの過程で重要な役割を果たしています。CREsは、転写因子やヌクレオソームなどの多様なエフェクタータンパク質と結合することで、遺伝子発現を動的に調節します。しかし、既存の研究方法では、特に単細胞レベルでこれらのエフェクタータンパク質のゲノム全体での結合動態を測定する際に限界があり、CREsの構造がその機能とどのように関連しているかを完全に理解することが困難でした。特に、細胞分化と老化の過程におけるCREsの役割については不明な点が多く残されています。 こ...

多モーダル深層学習による小児低悪性度神経膠腫の再発リスク予測の改善

深層学習を用いた小児低悪性度神経膠腫の術後再発予測 背景紹介 小児低悪性度神経膠腫(Pediatric Low-Grade Gliomas, PLGGs)は、小児において最も一般的な脳腫瘍の一つであり、すべての小児中枢神経系腫瘍の30%から50%を占めています。PLGGsの予後は比較的良好ですが、術後再発リスクは従来の臨床的、画像学的、および遺伝子学的要因では正確に予測することが困難です。術後再発の異質性により、特に補助療法や画像モニタリングに関する術後管理の意思決定が複雑になっています。そのため、術後再発リスクを正確に予測するツールを開発することは、患者管理の最適化と予後の改善にとって非常に重要です。 近年、深層学習(Deep Learning, DL)は、特に腫瘍のセグメンテーションや予...

長尾画像認識における単純性バイアスの深掘り

学術的背景と問題提起 近年、深層ニューラルネットワークは、画像認識、物体検出、セマンティックセグメンテーションなどのコンピュータビジョン分野で顕著な進展を遂げています。しかし、長尾分布(long-tailed distribution)データに直面した場合、最も先進的な深層モデルでさえも性能が低下します。長尾分布とは、データセット内の少数クラス(tail classes)のサンプル数が多数クラス(head classes)のサンプル数に比べてはるかに少ない状況を指します。このデータ不均衡問題は、パイプライン故障検出や顔認識などの多くの実用的なアプリケーションで普遍的に見られます。 長尾画像認識の主な課題は、データ不均衡問題を効果的に処理し、特に少数クラスの汎化性能を向上させることです。一般的...

半教師あり医療画像セグメンテーションのための予測とマスク

半監督医療画像セグメンテーションにおけるPICKモデルの応用 学術的背景 医療画像セグメンテーションは、臨床実践において重要な意義を持ち、医師に臓器や腫瘍の体積、位置、形状などの重要な情報を提供します。近年、深層学習に基づくモデルは医療画像セグメンテーションタスクで優れた性能を示していますが、これらのモデルは通常、大量の注釈付きデータを必要とします。しかし、医療画像の注釈は専門の臨床医師が必要であり、これらの注釈データを取得するには時間とコストがかかります。そのため、限られた注釈データでモデルの性能を向上させる方法が重要な研究課題となっています。 半教師あり学習(Semi-Supervised Learning, SSL)は、限られた注釈データと大量の未注釈データを同時に活用することで、この...