セマンティック協調学習を用いたヒューリスティック水中知覚強化

学術的背景と問題提起 水中画像は、海洋探査、水中ロボット、海洋生物識別などの分野で重要な応用価値を持っています。しかし、水による光の屈折と吸収の影響で、水中画像は通常、コントラストが低く、色の歪みが生じるため、後続の知覚タスク(例えば、物体検出やセマンティックセグメンテーションなど)の精度に深刻な影響を与えます。既存の水中画像強調方法は主に視覚品質の向上に焦点を当てていますが、強調画像の実際の応用効果を無視しています。そのため、視覚品質の向上と実際の応用のバランスを取ることが、現在の研究における重要な課題となっています。 この問題を解決するために、本論文では、ヒューリスティックな可逆ネットワークに基づく水中知覚強調方法(HUPE)を提案しています。この方法は、水中画像の視覚品質を向上させるだ...

品質敵対学習によるブラインド画像品質評価:内容忠実度の知覚可能性の探求

品質敵対学習を用いたコンテンツ忠実度を探求するブラインド画像品質評価 学術的背景 画像品質評価(Image Quality Assessment, IQA)は、コンピュータビジョン分野における基本的な問題であり、画像の視覚的内容の忠実度を評価することを目的としています。IQAは、画像圧縮や復元などの分野で重要な応用価値を持っています。従来のIQA手法は、主にフルリファレンス(Full-Reference, FR-IQA)とノーリファレンス(No-Reference, NR-IQA)の2つに分類されます。FR-IQAは、歪み画像と参照画像との差異を比較することで画像品質を評価しますが、NR-IQAは参照画像なしで歪み画像自体から品質を評価します。NR-IQAは参照画像を必要としないため、画像内...

CSFRNet: 長期人物再識別のための服装状態認識の統合

概要 長期人物再識別(LT-ReID)における服装の変化に対応するため、従来の手法から離れる必要があります。従来のLT-ReID戦略は、主に生体認証ベースとデータ適応ベースの2つに分かれていますが、それぞれに欠点があります。前者は高品質な生体データが不足する環境では機能せず、後者は服装の変化が最小または微妙な場合に効果を失います。これらの課題を克服するため、我々は服装状態認識特徴正則化ネットワーク(CSFRNet)を提案します。この新しいアプローチは、服装状態認識を特徴学習プロセスにシームレスに統合し、服装が完全に変化する場合、部分的に変化する場合、または全く変化しない場合においても、明示的な服装ラベルを必要とせずにLT-ReIDシステムの適応性と精度を大幅に向上させます。我々のCSFRNe...

汎用代理モデルを用いたサンプル選択によるラベルノイズの対処

学術的背景と問題提起 ディープニューラルネットワーク(Deep Neural Networks, DNNs)の急速な発展に伴い、視覚知能システムは画像分類、物体検出、動画理解などのタスクで顕著な進歩を遂げています。しかし、これらのブレークスルーは高品質な注釈付きデータの収集に依存しており、注釈プロセスは時間がかかり、コストがかかります。この問題に対処するため、研究者は大規模なウェブデータを活用してトレーニングを行うようになりましたが、これらのデータにはノイズラベル(label noise)が含まれることが多く、これがディープニューラルネットワークの性能に悪影響を及ぼします。ノイズラベルの存在は、トレーニングデータとテストデータの分布の不一致を引き起こし、クリーンなテストデータに対するモデルの...

行動から自然言語へ:無人航空機意図認識の生成アプローチ

UAVの行動意図認識の生成モデルに基づく研究:行動から自然言語へのクロスモーダルアプローチ 背景と研究目的 近年、無人機(Unmanned Aerial Vehicle, UAV)技術は飛躍的な発展を遂げ、捜索救助、農業精密作業、通信中継などの民間および軍事分野で広く活用されています。しかし、UAV群の規模が拡大し、知能化レベルが向上する中、空中指揮と制御分野における更なる高度な知能化への需要が高まっています。複雑な対抗環境下では「状況認識」(Situation Awareness)を向上することが鍵となり、特にUAVの行動意図を効果的に識別することが重要です。この識別プロセスは、敵の作戦意図と戦術的欺瞞の関係を明らかにし、指揮体系内での情報フローを最適化し、意思決定に対するガイドラインを提...