オブジェクト再識別のためのトランスフォーマー:調査

オブジェクト再識別のためのTransformer: サーベイ 背景と研究の重要性 オブジェクト再識別(Object Re-Identification、以下Re-ID)は、特定のオブジェクトを異なる時間やシーンで識別する重要なコンピュータビジョンタスクです。本分野は、畳み込みニューラルネットワーク(Convolutional Neural Networks, CNNs)をベースとした深層学習技術により大きな進展を遂げました。しかし、視覚Transformerの登場により、Re-ID研究は新たな局面を迎えています。本研究では、Transformerを用いたRe-ID技術を体系的にレビューし、画像/ビデオ、少データ/少アノテーション、多モーダル、特殊な応用シナリオでの利点と課題を分析します。 研...

多組学データの統合による肺腺癌予後および免疫療法におけるエフェロサイトーシスの役割の解明

肺腺癌におけるアポトーシス死細胞除去特性とその予後および免疫療法との関連研究 背景および研究の動機 肺癌は、世界的に癌による死亡の主な原因であり、その中でも肺腺癌(Lung Adenocarcinoma, LUAD)は最も一般的な組織型です。疾患の潜行性や特異性の欠如により、多くの肺癌患者は進行期に診断され、従来の治療法(手術、放射線療法、化学療法)の効果は限られており、患者の全生存率は依然として低い状況です。近年、免疫療法、特に免疫チェックポイント阻害薬(Immune Checkpoint Inhibitors, ICIs)は、非小細胞肺癌(NSCLC)患者に希望をもたらしていますが、腫瘍微小環境(Tumor Microenvironment, TME)の免疫抑制効果によりその効果は制限さ...

縦断的MR画像における自己蒸留マスク画像変換器を使用した頸部リンパ節転移の自動セグメンテーション

縦断的MR画像における自己蒸留マスク画像変換器を使用した頸部リンパ節転移の自動セグメンテーション

自己蒸留型マスクされた画像トランスフォーマーの縦断MRIにおける可能性 - 頸部リンパ節転移の自動セグメンテーション 報告の紹介 放射線治療におけるがん腫の自動セグメンテーション技術は、スピードの向上と手作業によるリーダー間の差異の低減を約束するものです。放射線腫瘍学の臨床実践において、正確かつ迅速な腫瘍のセグメンテーションは、患者の個別化された治療において非常に重要です。Memorial Sloan Kettering Cancer Centerの研究者らによるこの研究は、マスクされた画像モデリングによるビジョントランスフォーマー (SMIT) アルゴリズムを用いて、経時的T2強調MRI画像における頭頸部扁平上皮がん患者の頸部リンパ節転移の自動セグメンテーション精度を実現・評価することを目...

歩行中の視覚のディープラーニングを用いた転倒リスク評価の強化

はじめに 転倒事故は複数の臨床群で一般的であり、通常のリスク評価には個人の歩行の視覚的観察が含まれます。しかし、歩行の観察評価は通常、転倒リスクを増加させる可能性のある欠陥を特定するために、実験室内で個人に標準化された歩行プロトコルテストを行うことに限定されており、微妙な欠陥は観察されにくい可能性があります。そのため、客観的な方法(例えば慣性計測ユニット、IMUs)は、高解像度の歩行特性を定量的に分析するのに有用であり、微妙な違いを捉えることで転倒リスク評価の情報量を向上させるのに役立ちます。しかし、IMUのみに依存した歩行の器械化分析には限界があり、参加者の行動や環境の詳細(例えば障害物)を考慮していません。ビデオアイトラッカーは、頭部と目の動きを記録することで、人々が頭部と目の動きに基づ...

対照的な自己監督学習による心エコー図からの効率的な深層学習ベースの自動診断

深層学習における超音波心動図自動診断の新たな突破:自己教師あり学習法の比較研究レポート 研究背景 人工知能と機械学習技術が急速に発展する中、それらは医用画像診断分野でますます重要な役割を果たしています。特に、自己教師あり学習(Self-Supervised Learning, SSL)は、ラベルデータが希少な問題に効果を発揮し、医用画像のラベル取得が困難かつ高価である場合に重要となります。通常、自己教師あり学習の多くの方法は、豊富な時間情報を含むビデオ画像、例えば超音波心動図に特別に適応・最適化されていません。したがって、小型のラベルデータセットでの自動医用画像診断の性能を向上させるために、超音波心動図ビデオに特化した自己教師あり対照学習法の開発が特に切迫し、重要です。 研究出典 本研究は、...