基于反事实推理的多模态公众演讲焦虑检测通用去偏框架

学术背景与问题引入 在当今教育领域,公共演讲焦虑(Public Speaking Anxiety, PSA)是一个普遍存在的现象,尤其是在非母语学习者中。这种焦虑不仅影响学习者的表达能力,还可能阻碍其个人发展。为了帮助学习者克服这一问题,研究者们开始探索如何通过多模态数据(如视频、音频和文本)自动检测演讲焦虑状态。然而,现有的多模态公共演讲焦虑检测(Multimodal Public Speaking Anxiety Detection, MPSAD)模型在训练过程中容易受到多种潜在偏差的影响,例如上下文偏差(context bias)、标签偏差(label bias)和关键词偏差(keyword bias)。这些偏差会导致模型过度依赖某些表面特征,而未能充分利用多模态信息,从而降低检测的准...

基于双提示的排练式持续学习方法:DUPT

学术背景 在机器学习和神经网络领域,持续学习(Continual Learning)是一个重要的研究方向。持续学习的目标是让模型能够在一系列任务中不断学习新知识,同时避免遗忘已经学到的旧知识。然而,现有的持续学习方法面临一个主要挑战:灾难性遗忘(Catastrophic Forgetting)。灾难性遗忘指的是模型在学习新任务时,会迅速遗忘之前学到的知识,导致旧任务的性能大幅下降。这一问题在现实应用中尤为突出,因为许多任务需要模型在不断变化的环境中持续学习和适应。 为了解决这一问题,研究者们提出了多种方法,其中基于回放的方法(Rehearsal-based Methods)是一种常见的解决方案。这类方法通过存储旧任务的代表性样本,并在学习新任务时回放这些样本来巩固旧知识。然而,现有的回放方法...

复杂量化最小误差熵与基准点:理论及模型回归中的应用

复杂量化最小误差熵与基准点的理论及应用:模型回归中的突破 学术背景 在机器学习和信号处理领域,非高斯噪声的存在往往会对模型的性能产生不利影响。传统的均方误差(Mean Squared Error, MSE)虽然在理论上和计算上具有简单性,但在面对非高斯噪声时,其可靠性受到严重挑战。为了解决这一问题,研究者们提出了多种优化准则,其中最小误差熵(Minimum Error Entropy, MEE)因其在抑制脉冲噪声和异常值方面的优异表现而备受关注。然而,原始的MEE算法由于需要对误差样本进行双重求和,计算复杂度较高,限制了其在大规模数据集中的应用。 为了降低计算负担,Zheng等人提出了量化最小误差熵(Quantized MEE, QMEE),通过量化技术显著提高了计算效率。在此基础上,本研究...

基于特征擦除和对比学习的双关系Transformer网络在多标签图像分类中的应用

多标签图像分类的新突破——双关系Transformer网络 学术背景 多标签图像分类(Multi-Label Image Classification, MLIC)是计算机视觉领域中的一个基础但极具挑战性的问题。与单标签图像分类不同,MLIC的目标是为一张图像中的多个对象同时分配标签。由于图像中可能包含多个对象,且这些对象之间存在复杂的空间和语义关系,MLIC任务面临着场景复杂、对象尺度多样以及对象间隐含关联等挑战。近年来,随着深度学习技术的快速发展,尤其是卷积神经网络(CNN)和Transformer的引入,MLIC任务取得了显著进展。然而,现有的Transformer方法在处理2D特征图时,通常会将特征图展平为1D序列,这导致空间信息的丢失。此外,现有的注意力机制模型往往只关注显著的特征...

基于自适应分布式多任务学习的高效移动自组网图像识别

自适应分布式多任务学习框架ADAMT:移动自组网中的高效图像识别 学术背景 在移动自组网(Mobile Ad-hoc Networks, MANETs)中,分布式机器学习面临着巨大的挑战。这些挑战主要来自于设备的有限计算资源、非独立同分布(Non-IID)的数据分布以及动态变化的网络拓扑结构。现有的方法通常依赖于集中式协调和稳定的网络条件,但在实际应用中,这些条件往往难以满足。为了解决这些问题,研究人员提出了一种名为ADAMT(Adaptive Distributed Multi-Task Learning)的自适应分布式多任务学习框架,旨在在资源受限的移动自组网中实现高效的图像识别。 移动自组网是一种去中心化、无基础设施的网络,能够在没有固定基础设施的情况下实现设备之间的自主连接和信息共享...

基于情景记忆的双Actor-Critic框架在深度强化学习中的应用

学术背景 深度强化学习(Deep Reinforcement Learning, DRL)在游戏、机器人、导航、计算机视觉和金融等多个领域取得了显著成就。然而,现有的DRL算法普遍存在样本效率低下的问题,即需要大量的数据和训练步骤才能达到理想的性能。尤其是在连续动作任务中,由于状态-动作空间的高维性,传统的DRL算法难以有效利用情景记忆(Episodic Memory)来指导动作选择,导致样本效率进一步降低。 情景记忆是一种非参数控制方法,通过记忆高回报的历史经验来提升样本效率。在离散动作任务中,情景记忆可以直接用于评估每个可能的动作,并选择估计值最高的动作。然而,在连续动作任务中,动作空间是无限的,传统的情景记忆方法难以直接应用于动作选择。因此,如何在连续动作任务中有效利用情景记忆来提升样...