利用图卷积网络进行多视角非图数据的半监督学习

背景介绍 在机器学习领域,半监督学习(Semi-Supervised Learning, SSL)因其能够利用少量标注数据和大量未标注数据进行学习而备受关注。特别是在数据标注成本高昂的场景中,基于图的半监督学习方法逐渐成为研究热点。图卷积网络(Graph Convolutional Networks, GCNs)在半监督学习中表现出色,尤其是在具有图结构的数据(如引文网络和社交网络)中。然而,GCNs在非图结构的多视图数据(如图像集合)中的应用仍存在明显空白。 多视图数据(Multi-view Data)是指从不同视角或模态捕捉同一对象信息的数据集。例如,电视数据包含视频和音频两个视图,自然语言理解中同一语义对象可以用不同语言表达,人脸识别中2D图像和3D模型代表不同模态的面部数据。多视图学...

基于口腔解剖知识的半监督学习在3D牙科CBCT分割和病变检测中的应用

学术背景与研究动机 在牙科医疗保健领域,锥形束计算机断层扫描(CBCT, Cone Beam Computed Tomography)是一种广泛应用的三维成像技术。CBCT能够提供口腔的三维图像,尤其在对牙源性病变的诊断中表现出色。然而,CBCT图像的分割(segmentation)——即对图像中每个体素(voxel)标记出病变、骨骼、牙齿和修复材料——是一个关键且复杂的任务。目前,临床实践中主要依赖手动分割,这不仅耗时,还需要大量的专业知识。为了实现自动化分割,减少对大量手动标记数据的依赖,研究者们提出了结合口腔解剖知识的半监督学习方法。本文提出了一种新颖的“口腔解剖知识引导的半监督学习模型”(OAK-SSL, Oral-Anatomical Knowledge-Informed Semi...

FedRVR :基于关系引导的多功能正则化的联邦半监督学习

学术背景与问题提出 随着数据隐私问题的日益突出,联邦学习(Federated Learning, FL)作为一种去中心化的机器学习范式,逐渐成为研究热点。联邦学习允许多个客户端在不共享数据的情况下协作训练一个全局模型,从而保护数据隐私。然而,现有的联邦学习方法通常假设每个客户端的数据都是完全标注的,这在实际应用中往往是不现实的,尤其是在标注能力有限的情况下。为了解决这一问题,联邦半监督学习(Federated Semi-Supervised Learning, FSSL)应运而生。FSSL 旨在利用大量未标注的数据进行知识挖掘,从而在保护隐私的同时提升模型性能。 然而,现有的 FSSL 方法主要依赖于数据增强来保持局部模型与全局模型之间的一致性,这导致了分类器的偏差,并且在未标注客户端数据分...

PICK:基于预测与掩码的半监督医学图像分割方法

PICK模型在半监督医学图像分割中的应用 学术背景 医学图像分割在临床实践中具有重要意义,能够为医生提供关于器官或肿瘤的体积、位置和形状等关键信息。近年来,基于深度学习的模型在医学图像分割任务中表现出色,但这些模型通常需要大量的标注数据。然而,医学图像的标注需要专业的临床医生,获取这些标注数据既耗时又昂贵。因此,如何在有限的标注数据下提高模型性能成为了一个重要的研究问题。 半监督学习(Semi-Supervised Learning, SSL)通过同时利用有限的标注数据和大量的未标注数据,成为解决这一问题的有效方法。现有的SSL方法主要分为两类:伪标签(Pseudo-labeling)和基于一致性的协同训练(Consistency-based Co-training)。然而,这些方法在处理未...

在野外使用SAM学习检测新物种

研究论文报告:基于 SAM 的开放世界物体检测框架 背景介绍 随着生态系统监测的重要性不断提升,野生动植物及植物群体的监测已成为生态保护和农业发展的关键手段。这些监测工作包括估算种群数量、识别物种、研究物种行为以及分析植物病害或多样性。然而,传统的封闭世界物体检测模型通常训练于已标注的单一物种数据,难以泛化到新的物种分类。 当前的生态系统研究在数据和方法上存在诸多挑战,特别是标注数据的不足以及模型对新物种的适应能力有限。基于此,来自美国伊利诺伊大学香槟分校的 Garvita Allabadi、Ana Lucic、Yu-Xiong Wang 和 Vikram Adve 提出了一种面向开放世界的物体检测框架,利用视觉基础模型 Segment Anything Model(SAM),在无需标注新物...