ユーティリティと動的ローカライゼーションプロセスに基づく3ウェイ意思決定アプローチ:円形Q-rung orthopairファジィ集合における大規模言語モデルのランキングとグレーディング

学術的背景 人工知能(AI)と自然言語処理(Natural Language Processing, NLP)の急速な発展に伴い、大規模言語モデル(Large Language Models, LLMs)は学術界と産業界で顕著な進歩を遂げています。しかし、LLMsが複数のNLPタスクで優れた性能を発揮しているにもかかわらず、すべてのタスクを同時に満たす単一のモデルはまだ存在しません。この多様なタスク要件と評価基準の複雑さにより、LLMsの評価は多基準意思決定(Multi-Criteria Decision-Making, MCDM)問題となっています。従来のMCDM手法はランキングを行うことができますが、不確実性、タスクの優先順位、データの変動性などの点で限界があり、特にバイナリデータを扱う...

区間集合の非類似度尺度と可能性度に基づく改良代替キューイング方法と多専門家多基準意思決定への応用

学術的背景と問題の導入 多専門家多基準意思決定(Multi-Expert Multi-Criteria Decision-Making, MEMCDM)の分野において、不確実性と不正確な情報を効果的に処理することは常に核心的な課題です。特に、複数の専門家と複数の意思決定基準が関わる複雑なシナリオでは、専門家の意見がしばしば対立し、意思決定プロセスを複雑化させます。この問題に対処するため、研究者たちは区間集合(Interval Sets)に基づく意思決定手法を提案してきました。区間集合は上下限の集合を通じて、不確実な定性的情報をより包括的に記述することができます。しかし、既存の区間集合に基づく意思決定手法、特に代替キューイング法(Alternative Queuing Method, AQM)...

ピクチャーファジィ集合の新しい類似性尺度とその様々な応用

学術的背景 意思決定分析、パターン認識、医療診断などの分野において、ファジィ集合理論は不確実性や曖昧性を扱うための重要な数学的ツールを提供しています。従来のファジィ集合(Fuzzy Set, FS)や直観的ファジィ集合(Intuitionistic Fuzzy Set, IFS)は、複雑なデータを扱う際に一定の限界があり、特に中立性(neutrality)を考慮する必要がある場合にその限界が顕著です。ピクチャーファジィ集合(Picture Fuzzy Set, PFS)は、ファジィ集合理論の拡張として、中立性という次元を導入し、現実世界の曖昧な情報をより包括的に記述することができます。しかし、既存のPFS類似度測定方法は、いくつかの問題を扱う際に不合理な結果を生じることがあり、例えば公理要件...

対称線形オルソペアファジィ集合のtノルムとtコノルムおよび多基準意思決定における認知的応用

学術的背景と問題提起 ファジィ集合(Fuzzy Sets, FSs)の研究分野において、不確実性問題の処理は核心的な課題の一つです。ファジィ集合はZadehによって1965年に初めて提案され、理論と応用研究のホットスポットとして急速に広まりました。研究が進むにつれ、ファジィ集合の拡張形式である直交対ファジィ集合(Orthopair Fuzzy Sets, OFSs)が生まれました。OFSsは直交対(すなわち帰属度と非帰属度)を導入することで、不確実性情報をより包括的に記述します。Yagerは2013年に初めてOFSsを定義し、q階直交対ファジィ集合(q-Rung Orthopair Fuzzy Sets, q-ROFSs)の概念を提案しました。その後、GaoとZhangは2021年に線形直交...

分数階微分方程式からLyapunov指数を計算する最低コストに関する研究

背景紹介 分数階微分方程式(Fractional Differential Equations, FDEs)は、伝統的な微積分を拡張したもので、微分と積分の次数を非整数にすることが可能です。この数学的フレームワークは、特にカオスシステムや非線形システムの研究において、複雑な動的挙動を記述する際に独自の優位性を示します。Lyapunov指数(Lyapunov Exponents, LEs)は、システムの初期条件に対する感度を測る重要な指標であり、システムがカオス状態にあるかどうかを判断するためによく使用されます。しかし、分数階カオスシステムのLyapunov指数を計算するのは通常コストが高く、特に高次元システムではその傾向が顕著です。そのため、計算コストを削減し、計算効率を向上させる方法が分数...