浅い勾配における持続的な仮足分裂は有効な走化性戦略である

学術的背景 走化性(chemotaxis)は、細胞や微生物が化学勾配に沿って方向性を持って移動する重要な行動であり、免疫反応、創傷治癒、病原体感染などの生理的プロセスで重要な役割を果たします。しかし、細胞が複雑な勾配環境で最適な運動モード(例えば偽足分裂やde novo形成)をどのように選択するかはまだ不明です。従来のモデルでは、細胞はグローバルな勾配感知(global gradient sensing)によってナビゲーションを行うと仮定されていましたが、このメカニズムは浅い勾配(shallow gradients)や動的な環境では非効率である可能性があります。 本研究は、アメーバ様細胞(例えば*Dictyostelium discoideum*)の偽足(pseudopod)ダイナミクスに焦...

共感応答生成のための強化学習を用いた共感レベル調整

人工知能対話システムにおける共情反応生成に関する研究 学術的背景 人工知能技術の急速な発展に伴い、オープンドメイン対話システム(open-domain dialogue systems)は徐々に研究の焦点となっています。このようなシステムは、ユーザーと自然で流暢な対話を提供し、適切な応答を返すことを目指しています。しかし、現在の対話システムは言語の流暢性や連貫性において顕著な進歩を遂げている一方で、共情(empathy)能力の不足が依然として課題となっています。共情とは、他者の経験や感情を理解する能力であり、感情共情(affective empathy)と認知共情(cognitive empathy)の両面を含みます。感情共情はユーザーの感情に対する反応に関わり、認知共情はユーザーの状況を理...

無人水上艇におけるモデルベース強化学習のための効率的な確率的ニューラルネットワークモデル

無人水上ビークル(USV)のモデル予測制御の新手法:確率的ニューラルネットワークに基づくMBRLフレームワーク 学術的背景 無人水上ビークル(Unmanned Surface Vehicles, USV)は、近年海洋科学分野で急速に発展し、海洋輸送、環境モニタリング、災害救援などのシナリオで広く活用されています。しかし、USVの制御システムは依然として多くの課題を抱えており、特に複雑な海洋環境での外部干渉への対応能力が問題とされています。従来のモデルフリー強化学習(Model-Free Reinforcement Learning, MFRL)手法は特定のタスクでは良好なパフォーマンスを示すものの、大量のデータとシミュレーショントレーニングに依存しており、不確実な環境に対するロバスト性に欠け...

関係グラフ学習を用いたハイブリッド環境における強化学習型マルチエージェント協調ナビゲーション

マルチエージェントハイブリッド環境協調ナビゲーション研究: 関係グラフ学習に基づく強化学習の新しいアプローチ モバイルロボット技術は、人工知能分野の進展とともに応用ブームを迎えています。その中で、ナビゲーション能力はモバイルロボット研究の核心的なホットスポットの1つです。従来のナビゲーション手法は、動的環境、障害物回避、複数ロボットの協調タスクに直面した際、アルゴリズムの複雑性、計算資源の消費、モデルの汎化性という問題に直面しやすいです。これらの課題を解決するため、Central South UniversityとZhejiang University of Technologyの研究チームは、関係グラフアテンションネットワーク(Graph Attention Network, GAT)に基...

非線形システムのための適応型複合固定時間RL最適化制御及び知能船舶自動操舵への応用

非線形固定時間強化学習最適化制御によるインテリジェント船舶自動操舵システムの研究 近年、インテリジェント自動操舵技術は自動化制御分野における研究の焦点の一つとなっています。複雑な非線形システムにおいて、特に固定時間内でシステムの安定性と性能最適化を実現するための最適化制御戦略の設計は、制御エンジニアと研究者にとって重要な課題となっています。しかし、既存の固定時間制御理論は、システム状態の収束を実現する際にリソース利用効率とのバランスを考慮していない場合が多く、このため過剰補償または補償不足の現象を引き起こし、システムの定常状態誤差を増加させる可能性があります。さらに、時間制限内での非線形不確実性の推定誤差最小化については、関連研究は依然として少ないのが現状です。したがって、本研究では、この重...