Robust Multiobjective Reinforcement Learning Considering Environmental Uncertainties

Background In recent years, Reinforcement Learning (RL) has demonstrated its effectiveness in solving various complex tasks. However, many real-world decision-making and control problems involve multiple conflicting objectives. The relative importance (preference) of these objectives often needs to be balanced against each other in different scenar...

Investigating the Properties of Neural Network Representations in Reinforcement Learning

Investigating the Properties of Neural Network Representations in Reinforcement Learning

Traditional representation learning methods usually design a fixed basis function architecture to achieve desired properties such as orthogonality and sparsity. In contrast, the idea of deep reinforcement learning is that the designer should not encode the properties of the representation, but instead let the data flow determine the properties of t...