跨尺度共生局部二值模式用于图像分类

基于跨尺度共现局部二值模式的图像分类方法研究 图像分类技术在计算机视觉领域中占据重要地位,而图像特征提取是该领域的核心研究方向。近年来,局部二值模式(Local Binary Pattern, LBP)由于其高效性和描述能力被广泛应用于纹理分类、人脸识别等视觉任务中。然而,传统的LBP方法在处理几何变换(如旋转、缩放)和图像噪声时表现出明显的局限性。针对这些问题,重庆邮电大学的肖斌等研究团队在《International Journal of Computer Vision》期刊上发表了题为“CS-COLBP: Cross-Scale Co-Occurrence Local Binary Pattern for Image Classification”的研究论文,提出了一种新的图像特征提取...

通过StyleGAN实现图像编辑

GAN反演与图像编辑新方法:Warping the Residuals for Image Editing with StyleGAN 背景与研究问题 生成对抗网络(Generative Adversarial Networks, GANs)在图像生成领域取得了显著的进展,为高质量图像的合成和编辑提供了可能性。StyleGAN模型以其语义可解释的潜在空间组织,展现了超越传统图像翻译方法的编辑能力。然而,GAN的实际应用面临一个核心挑战:在真实图像编辑中,需要将图像逆向投影到GAN的潜在空间(即GAN反演),实现对原始图像的高保真重建以及高质量的编辑。 现有方法中,低比特率潜在空间(如StyleGAN的$W^+$空间)在编辑上表现较佳,但由于信息瓶颈问题,往往丢失图像细节;而高比特率潜在空间虽...

基于Transformer的对象再识别综述

Transformer for Object Re-Identification: A Survey 背景与研究意义 对象重新识别(Object Re-Identification,简称Re-ID)是一项重要的计算机视觉任务,旨在跨时间和场景识别特定对象。这一领域在深度学习技术的推动下取得了显著进展,尤其是基于卷积神经网络(Convolutional Neural Networks,简称CNNs)的研究。然而,随着视觉Transformer的出现,Re-ID研究开启了新的篇章。本文综述了基于Transformer的Re-ID技术,分析其在图像/视频、少数据/少标注、多模态及特殊应用场景中的优势与挑战。 研究团队与发表信息 本文由来自武汉大学、Sun Yat-Sen University和In...

数据管理教学:基于DataLad的多年多领域努力

科学研究数据管理教育的多年的多领域努力 研究背景 随着现代神经科学的发展,研究数据管理(Research Data Management, RDM)已经成为科学家们不可或缺的技能。然而,尽管研究数据管理对于科学研究具有重要性,这类技术技能往往在领域特化的研究生教育中被忽视。因此,越来越多的社区努力提供有组织的培训机会和自学材料,以帮助早期科研人员获得这方面的知识和技能。 Massachusetts Institute of Technology(MIT)的“the missing semester of your cs education”正是这种教育缺失的一个例证。此外,现代计算机和应用程序的高可用性极大地降低了用户对计算机的熟悉程度,这使得许多科学家缺乏有效管理研究数据和结果所需的基本技...

通过直接调制瓦级光子晶体面发射激光器实现高速大功率自由空间光通信

通过直接调制瓦级光子晶体面发射激光器实现高速大功率自由空间光通信

高速大功率自由空间光通信:瓦特级光子晶体表面发射激光器的直接调制 背景介绍 半导体激光器作为光通信的重要光源,因其体积小、成本低、寿命长、效率高等特点而被广泛应用。例如,垂直腔面发射激光器(VCSELs)由于其低功耗和宽带直接调制能力,适用于数据中心的短距离光互连;而分布反馈(DFB)激光器则因其单模操作特性,在长距离光纤通信中得到了广泛应用。近年来,利用半导体激光器的自由空间光通信(FSO)因其能够在长距离内实现高速传输,且无需光纤,因此备受关注。FSO 技术在超越5G和未来6G 通信中的回程和前传网络,卫星之间的通信以及深空通信中都具有潜在应用。在这些应用中,高功率和窄束宽的激光特性尤为重要。然而,传统的半导体激光器如VCSELs和DFB 激光器无法在单晶片上同时满足高功率和高速操作的要...