先进最优跟踪结合神经网络评价技术用于非对称约束零和博弈

学术报告:先进最优跟踪结合神经网络评价技术用于非对称约束零和博弈 背景与研究问题 在现代控制领域,博弈论是研究智能决策者之间竞争与合作的数学模型,其中涉及至少两个玩家的互动决策问题。近年来,微分博弈在控制领域引起了越来越多的关注。当我们面对复杂受扰动系统的最优控制问题时,通常将其视为零和博弈(Zero-Sum Game, ZSG)。如果某系统的控制问题涉及多种控制策略且无扰动时,则被称为非零和博弈(Non-ZSG)。然而,由于真实系统中常存在各种扰动,因此进一步考虑ZSG问题以减轻扰动对系统性能的影响非常重要。 尤其在连续时间(Continuous-Time, CT)非线性系统中,传统动态规划方法尽管非常有价值,但在解决非线性最优控制问题时,常因为维数灾难(Curse of Dimensio...

结构增强的原型对齐用于无监督跨域节点分类

结构增强的原型对齐用于无监督跨域节点分类 引言 随着现代信息技术的发展,图神经网络(Graph Neural Networks,GNNs)在处理复杂网络节点分类任务中展示了显著的成功。然而,其中一个关键问题是需要大量高质量标注数据,这对于图结构数据而言获取成本高昂且耗时。因此,如何将知识从一个标注丰富的图(源域)迁移到一个完全无标注的图(目标域)成为了亟待解决的重要问题。 研究背景及目的 作者所在团队来自浙江大学计算机科学学院、浙江省服务机器人重点实验室、以及新加坡国立大学计算学院。他们提出了一种名为结构增强的原型对齐(SEPA)的新型无监督图域适应框架,旨在通过构建基于原型的图和引入显式域差异度量来实现源域和目标域的对齐。该论文发表在《Neural Networks》期刊,并通过一系列实验...

基于两级类别对齐的无监督域自适应分割算法

基于两级类别对齐的无监督域自适应分割算法

语义分割旨在为图像中的每个像素预测类别标签(Liu et al., 2021; Wang et al., 2021),广泛应用于场景理解、医学图像分析、自动驾驶、地理信息系统和增强现实(Strudel et al., 2021; Sun et al., 2023)。虽然深度神经网络的发展显著提升了分割任务的表现(Chen et al., 2014; Guan et al., 2021; Zhao et al., 2017),但这些进展要求大量像素级标注数据进行模型训练,获取这些数据在现实场景中代价高昂(Jiang et al., 2022; Liang et al., 2023)。与此同时,当测试数据与训练数据存在分布差异时,多数分割方法的性能通常会下降(Huang et al., 2022...

以原型为基础的样本加权蒸馏统一框架应用于缺失模态的情感分析

以原型为基础的样本加权蒸馏统一框架应用于缺失模态的情感分析

以原型为基础的样本加权蒸馏统一框架应用于缺失模态情感分析 研究背景 情感分析是自然语言处理(NLP)中的一个重要领域,随着社交媒体平台的发展,人们越来越倾向于通过简短的视频片段来表达他们的情感。这导致多模态数据的快速增长。然而,现实生活中经常会遇到模态缺失的情况,例如由于音频丢失、摄像头遮挡或语音转录错误等问题。在这种情况下,对缺失模态的情感分析成为一个具有挑战性的重要议题。多模态的异质性在尝试对所有模态在多模态网络上优化相同目标时,往往导致优化的不平衡问题,尤其是在模态缺失的情况下。现有的研究在处理模态缺失时,常常忽略了网络优化的不平衡问题。 研究来源 这篇论文由山东师范大学信息科学与工程学院的张玉娟、刘芳娥、庄旭强、侯英和张玉灵共同撰写,论文发表于2024年5月20日的《Neural N...

基于高阶奇异值分解的高效滤波器剪枝方法

背景介绍 网络剪枝(Network Pruning)是设计高效卷积神经网络(CNNs)模型的重要技术。其通过减少内存占用和计算要求,同时保持或提高总体性能,使得在资源受限设备(如手机或嵌入式系统)上部署CNNs变得可行。当前的假设是许多模型参数过多,即包含大量不必要或冗余的参数,剪枝这些冗余参数可以生成更小且更高效的模型,这不仅适用于资源受限设备,还可以在某些情况下提高模型的泛化能力。 现有的剪枝方法中,滤波器剪枝(Filter Pruning)和权重剪枝(Weight Pruning)都是流行的技术。权重剪枝是一种非结构化剪枝,指根据个别权重的重要性对其进行剪枝而不考虑任何特定的结构或模式。而滤波器剪枝则是结构化剪枝方法的一种,它依据某些标准对整个滤波器进行剪枝,同时保持网络的整体结构。 ...