基于注意力的双尺度融合卷积神经网络用于运动想象脑机接口

基于注意力的双尺度融合卷积神经网络用于运动想象脑机接口

脑机接口(Brain-Computer Interface, BCI)作为一种新增强通信与控制技术近年来逐渐崭露头角。基于电生理特征(如脑电图,EEG)的BCI中,运动想象(Motor Imagery, MI)是一个重要分支,通过解码用户的运动意图用于临床康复、智能轮椅控制、及光标控制等领域。然而,由于EEG信号的复杂性,如低信噪比(Signal-to-Noise Ratio, SNR)、非平稳性、低空间分辨率和高时间分辨率等特点,准确解码运动意图仍具有挑战性。现有的MI基BCI解码主要使用传统机器学习和深度学习方法。传统机器学习通常分为特征提取和特征分类两个独立步骤,方法包括快速傅里叶变换(Fast Fourier Transform, FFT)、通用空间模式(Common Spatial...

前运动阶段的脑电图帮助脑机接口识别运动意图

前运动阶段的脑电图帮助脑机接口识别运动意图 背景与研究目的 脑机接口(Brain-Computer Interface, BCI)是一项通过神经信号直接翻译人类意图以控制设备的技术,具有广泛的应用前景[1]。脑机接口有可能改变日常生活、娱乐、通信、康复以及教育等多个领域。然而,现阶段基于运动意图的脑机接口存在一些挑战,特别是前运动阶段的脑电图(EEG)特征不明显且容易受注意力影响,这制约了运动BCI性能的提升。 基于上述背景,河北工业大学健康科学与生物医学工程学院、可靠性与智能化电气设备国家重点实验室和天津生物电磁技术与智能健康重点实验室的Yuxin Zhang、Mengfan Li、Haili Wang、Mingyu Zhang和Guizhi Xu(通讯作者)针对如何在前运动编码时加入准备...

基于高频稳态视觉诱发场的视觉脑机接口

基于高频稳态视觉诱发场的视觉脑机接口

基于高频稳态视觉诱发场的视觉脑机接口 背景介绍 脑机接口(Brain-Computer Interface, BCI)技术通过解码特定的脑活动信号,使用户能够控制机器。尽管侵入性BCI在捕获高质量脑信号方面表现出色,但其应用主要局限于临床环境。而非侵入性方法,如脑电图(Electroencephalography, EEG),则为广泛应用BCI提供了更具可行性的途径。然而,由于脑脊液和颅骨的影响,EEG信号在传播过程中会变得非常微弱,且颅骨的差异性和各向异性导电性让定位EEG信号位置变得更加困难。 磁源成像(Magnetoencephalography, MEG)是一种非侵入性成像脑活动的方法,它在捕捉精细空间信息方面优于EEG。这种优势主要源自磁通量不会像电流那样受到衰减。然而,传统MEG...

听觉提示对帕金森病步态过程中STN活动短时尺度动态的调节作用

帕金森病(Parkinson’s Disease, PD)患者通常会经历步态障碍,这种障碍严重影响他们的生活质量。以往的研究表明,基底神经节的β频率(15-30 Hz)振荡活动可能与步态障碍相关,但这些振荡活动在步态过程中的确切动态信息尚不清楚。此外,已有研究发现音频提示可以改善PD患者的步态运动学,如果能更好地了解这一提示的神经生理机制,则可以通过自适应深部脑刺激(ADBS)技术治疗步态障碍。因此,本研究旨在描绘步态过程中丘脑下核(subthalamic nucleus, STN)振荡活动的动态特征,并探索音频提示调节步态的神经生理机制。 来源和作者信息 本文由Chien-Hung Yeh、Yifan Xu、Wenbin Shi、James J. Fitzgerald、Alexander ...

在神经形态硬件上使用类脑计算原理的学习逆动力学

在神经形态硬件上使用类脑计算原理的学习逆动力学 背景与研究动机 在现代机器人领域中,实现自主人工代理的低延迟神经形态处理系统具有巨大潜力。但目前硬件基础的可变性和低精度对其稳定和可靠性能的实现提出了严峻挑战。为了应对这些挑战,研究者们采用基于大脑启发的计算原理(computational primitives),如三元峰时间依赖可塑性(triplet spike-timing dependent plasticity)、基于基底神经节的去抑制机制以及合作竞争网络,并将这些技术应用于运动控制。 本研究通过展示一个使用混合信号神经形态处理器实现的硬件脉冲神经网络(spiking neural network,SNN)在线学习两关节机器人臂的逆运动学的示例,证明了这一方法的可行性。最终系统能够使用...