基于效用和动态定位变换程序的三向决策方法在圆形q-rung orthopair模糊集中用于大型语言模型的排序和分级

学术背景 随着人工智能(AI)和自然语言处理(Natural Language Processing, NLP)的快速发展,大型语言模型(Large Language Models, LLMs)在学术界和工业界都取得了显著进展。然而,尽管LLMs在多个NLP任务中表现出色,但尚未有单一模型能够同时满足所有任务需求。这种多样化的任务需求和评估标准的复杂性,使得LLMs的评估成为一个多准则决策(Multi-Criteria Decision-Making, MCDM)问题。传统的MCDM方法虽然能够进行排名,但在处理不确定性、任务优先级和数据变异性等方面存在局限性,尤其是在处理二元数据时,难以有效进行分级。 为了解决这一问题,本文提出了一种基于效用和动态定位变换的三支决策(Three-Way D...

基于区间集差异度量和可能性度的改进替代排队方法及其在多专家多准则决策中的应用

学术背景与问题引入 在多专家多准则决策(Multi-Expert Multi-Criteria Decision-Making, MEMCDM)领域,如何有效处理不确定性和不精确信息一直是一个核心挑战。特别是在涉及多个专家和多个决策准则的复杂场景中,专家的意见往往存在分歧,导致决策过程复杂化。为了应对这一问题,研究者们提出了基于区间集(Interval Sets)的决策方法,区间集能够通过上下界集合来更全面地描述不确定的定性信息。然而,现有的基于区间集的决策方法,尤其是替代排队法(Alternative Queuing Method, AQM)中的相似性和差异性度量,仍存在一定的局限性,特别是在绝对量化(Absolute Quantization)的框架下,信息提取的精确性和全面性有待提升。...

一种新的图片模糊集相似性度量及其应用

学术背景 在决策分析、模式识别和医疗诊断等领域,模糊集理论为处理不确定性和模糊性提供了重要的数学工具。传统的模糊集(Fuzzy Set, FS)和直觉模糊集(Intuitionistic Fuzzy Set, IFS)在处理复杂数据时存在一定的局限性,尤其是在需要考虑中立性(neutrality)的情况下。图片模糊集(Picture Fuzzy Set, PFS)作为一种扩展的模糊集理论,引入了中立性这一维度,能够更全面地描述现实世界中的模糊信息。然而,现有的PFS相似度度量方法在处理某些问题时存在不合理的结果,例如无法满足公理要求、计算不同PFS之间的相似度时产生矛盾,以及在模式分类中表现不佳。为了解决这些问题,本文提出了一种基于逆切函数的新型PFS相似度度量方法,并展示了其在分类和医疗诊...

对称线性正交模糊集的t-范数与t-余范及其在多准则决策中的认知应用

学术背景与问题提出 在模糊集(Fuzzy Sets, FSs)的研究领域中,处理不确定性问题是核心挑战之一。模糊集由Zadeh于1965年首次提出,并迅速成为理论与应用研究的热点。随着研究的深入,模糊集的扩展形式——正交对模糊集(Orthopair Fuzzy Sets, OFSs)应运而生。OFSs通过引入正交对(即隶属度与非隶属度)来更全面地描述不确定性信息。Yager在2013年首次定义了OFSs,并提出了q阶正交对模糊集(q-Rung Orthopair Fuzzy Sets, q-ROFSs)的概念。随后,Gao和Zhang在2021年进一步提出了线性正交对模糊集(Linear Orthopair Fuzzy Sets, LOFs)及其对称形式——对称线性正交对模糊集(Symmet...

计算分数阶微分方程Lyapunov指数的最低成本研究

背景介绍 分数阶微分方程(Fractional Differential Equations, FDEs)是传统微积分的推广,允许微分和积分的阶数为非整数。这一数学框架在描述复杂动力学行为时表现出独特的优势,特别是在混沌系统和非线性系统的研究中。Lyapunov指数(Lyapunov Exponents, LEs)是衡量系统对初始条件敏感性的关键指标,常用于判断系统是否处于混沌状态。然而,计算分数阶混沌系统的Lyapunov指数通常计算成本较高,尤其是在高维系统中。因此,如何降低计算成本并提高计算效率成为分数阶混沌系统研究中的一个重要问题。 本文由Shuang Zhou, Qiyin Zhang, Shaobo He和Yingqian Zhang共同撰写,旨在通过Adomian分解法(Ado...

频率切换系统中爆发解的分歧与调节研究

学术背景 在非线性动力学系统中,频率切换现象因其在现实世界中的广泛存在及其独特的快-慢动力学特性,近年来受到了广泛关注。频率切换可以引起某些切换阈值下的发散行为,进而导致与跨临界分岔(transcritical bifurcation)相关的慢激发向量场中的爆发放解(bursting solutions)失稳。这种不稳定性在工程应用中尤为常见,可能会对系统的运行完整性造成根本性损害。因此,研究频率切换系统中爆发放解的稳定性及其调控方法,对于理解和预测系统动态行为具有重要意义。 论文来源 本论文由Jiahao Zhao、Xiujing Han、Jiadong Wang和Meng Han共同撰写,他们均来自中国江苏省江苏大学土木工程与力学学院。论文于2025年2月23日被接受,并于2025年发表...

双延迟在扩散捕食者-猎物系统中的影响:稳定性切换曲线法

双重延迟对捕食者-猎物系统影响的稳定性切换曲线方法研究 学术背景 捕食者-猎物模型(predator-prey model)是生态学中研究种群相互作用的基础模型之一。尽管这些模型看似简单,但它们能够产生复杂的动态结构,甚至在某些情况下导致混沌轨迹。捕食者对猎物的消耗率(即功能响应,functional response)在这些模型中起着关键作用。功能响应可以分为仅依赖猎物的类型和同时依赖猎物与捕食者的类型,例如Holling I-IV型和Beddington-DeAngelis、Crowley-Martin等类型。 近年来,研究者们开始关注延迟(delay)对捕食者-猎物系统的影响。延迟在生态系统中普遍存在,例如捕食者的繁殖延迟(reproduction delay)和人类的捕捞延迟(har...

通过两种积分算法分析乘性噪声对随机共振非线性薛定谔方程的影响

研究背景与问题引入 非线性波系统是物理学、光学和凝聚态物理等领域的核心研究对象之一。然而,现实中的非线性波系统往往受到随机噪声的干扰,这种干扰可能显著改变波的行为特性,例如孤子(Soliton)的传播、波湍流(Wave Turbulence)的形成以及模式生成(Pattern Formation)。为了更准确地描述这些复杂现象,科学家们提出了随机非线性薛定谔方程(Stochastic Nonlinear Schrödinger Equation, SNLSE),并在此基础上进一步发展了随机共振非线性薛定谔方程(Stochastic Resonant Nonlinear Schrödinger Equation, SRNLSE)。SRNLSE结合了色散效应(如时空色散和模间色散)以及非线性效应...

稳健的非专注离散选择

在当今信息爆炸的时代,决策者面临着海量的信息,而并非所有信息都与决策相关。为了更好地在信息丰富的环境中做出最优决策,理性疏忽模型(Rational Inattention, RI)被引入经济学领域。这一模型的核心思想是,决策者需要根据信息的“显著性”来分配注意力,以减少不必要的信息处理成本。然而,传统的RI模型假设决策者完全依赖于一个主观的先验分布(prior distribution),这种假设在实际应用中可能存在偏差,特别是在先验分布存在不确定性时。 本文旨在解决这一问题,提出了一种基于先验不确定性的鲁棒理性疏忽模型(Robust Rational Inattention)。通过允许决策者对先验分布存在模糊性(ambiguity aversion),作者试图构建一种更稳健的决策框架,以应...

利用小波识别金融价格跳跃的新分类

基于小波分析识别金融价格跳跃的新类别研究报告 学术背景 金融市场中的价格跳跃(price jumps)是指在极短时间内价格发生显著波动的现象,通常由外生因素(如突发新闻)或内生因素(市场内部反馈机制)引起。区分这两种不同类型的价格跳跃对于理解市场动态、预测极端事件以及制定有效的监管策略至关重要。然而,现有的研究方法多依赖于监督学习,需要明确的标签(如新闻事件)来分类跳跃,这在实际应用中存在局限性,因为许多价格跳跃可能并没有明确的新闻背景。 为了更好地识别和分类价格跳跃,特别是那些没有明显外生触发的内生跳跃,研究人员提出了一种无监督的分类框架,利用多尺度小波表示(multiscale wavelet representation)来分析时间序列。这一框架不仅能够捕捉价格跳跃的时间不对称性(ti...