比较11个国家的经验和描述基础经济偏好

比较11个国家的经验和描述基础经济偏好 背景与动机 近年来的研究显示,人类在对奖励价值的编码过程中存在高度情境依赖性,这在某些情况下会导致次优决策。然而,这种计算限制是否是人类认知的普遍特征仍不清楚。在这项研究中,作者研究了来自11个国家(阿根廷、伊朗、俄罗斯、日本、中国、印度、以色列、智利、摩洛哥、法国和美国)的561名个体的行为,旨在探索奖励价值编码的情境依赖性是否是人类认知的一致特征。 研究来源 该研究由Hernán Anlló、Sophie Bavard、Fatimaezzahra Benmarrakchi、Darla Bonagura等多位学者合作完成,分别来自多个国际知名学术机构,参与团队包括巴黎高等师范学校、瓦瑟达大学等。研究结果发表于《Nature Human Behavio...

否定对形容词的神经表征产生削弱效应而非反转效应

背景介绍 人类语言处理的一个显著特点是我们能够将储存的字汇元素——即词汇——按需组合起来,从而灵活地生成或改变当前的意义。这一过程的核心在于我们如何实时构建意义表征。尽管关于句法结构生成的研究已取得稳定进展并引发了富有成效的讨论,但关于新语义配置如何随着时间推移被表示的研究则相对较少。约翰霍普金斯大学的研究团队基于现有文献,专门研究了语言中的否定操作如何影响词语语义表示,特别是形容词。这项研究为理解人类大脑如何在实时中代表意义变化提供了一块基石。 论文来源 这篇题为“Negation mitigates rather than inverts the neural representations of adjectives”的论文由Arianna Zuanazzi、Pablo Ripollé...

以原型为基础的样本加权蒸馏统一框架应用于缺失模态的情感分析

以原型为基础的样本加权蒸馏统一框架应用于缺失模态的情感分析

以原型为基础的样本加权蒸馏统一框架应用于缺失模态情感分析 研究背景 情感分析是自然语言处理(NLP)中的一个重要领域,随着社交媒体平台的发展,人们越来越倾向于通过简短的视频片段来表达他们的情感。这导致多模态数据的快速增长。然而,现实生活中经常会遇到模态缺失的情况,例如由于音频丢失、摄像头遮挡或语音转录错误等问题。在这种情况下,对缺失模态的情感分析成为一个具有挑战性的重要议题。多模态的异质性在尝试对所有模态在多模态网络上优化相同目标时,往往导致优化的不平衡问题,尤其是在模态缺失的情况下。现有的研究在处理模态缺失时,常常忽略了网络优化的不平衡问题。 研究来源 这篇论文由山东师范大学信息科学与工程学院的张玉娟、刘芳娥、庄旭强、侯英和张玉灵共同撰写,论文发表于2024年5月20日的《Neural N...

InA: 在预训练语言模型上的抑制自适应方法

InA: 在预训练语言模型上的抑制自适应方法 预训练语言模型(Language Models, LMs)已经在自然语言处理(Natural Language Processing, NLP)任务中取得了显著的效果。然而,传统的微调方法存在冗余参数的问题,影响了效率和效果。为了应对这一挑战,本文提出了一种称为抑制自适应(Inhibition Adaptation, INA)的微调方法,用以减少添加的可调权重,并适当地再权重来自预训练语言模型的知识。 研究背景和问题 当前,微调预训练语言模型是一种常见的解决NLP下游任务的方法。然而,经典的微调方法需要更新所有的模型参数,这会导致冗余参数问题,尤其是当应用于新的下游任务时。冗余参数不仅影响模型的效率,还会阻碍模型性能的提升。为了解决这一问题,已有...

多尺度视觉中枢引导的多模态神经机器翻译:文本感知的跨模态对比解耦

多尺度视觉中枢引导的多模态神经机器翻译:文本感知的跨模态对比解耦

多尺度视觉中枢引导的多模态神经机器翻译:文本感知的跨模态对比解耦 学术背景 多模态神经机器翻译(Multi-Modal Neural Machine Translation, MNMT)旨在将语言无关的视觉信息引入文本以提升机器翻译的性能。然而,由于图像和文本在模态上的显著差异,这两者之间不可避免会出现语义不匹配的问题。解决这些问题的目标在于通过使用分解的多尺度视觉信息作为跨语言中枢,提高不同语言之间的对齐,从而改进MNMT的表现。 论文来源 这篇论文由朱俊俊、苏瑞和叶俊杰等研究人员撰写,作者分别来自昆明理工大学信息工程与自动化学院、云南大学信息科学与工程学院以及云南省人工智能重点实验室。论文将在2024年发表于著名期刊”Neural Networks”。 研究流程 研究工作主要分为以下几个...