Spin-Symmetry-Enforced Solution of the Many-Body Schrödinger Equation with a Deep Neural Network

Research on Deep Learning Framework for Spin-Symmetry-Enforced Solutions to the Many-Body Schrödinger Equation: A Groundbreaking Achievement In the fields of quantum physics and quantum chemistry, the description of many-body electron systems has always been an important yet highly challenging topic. Accurately characterizing strong electron-electr...

Rapid Cryogenic Characterization of 1,024 Integrated Silicon Quantum Dot Devices

Rapid Cryogenic Characterization of 1,024 Integrated Silicon Quantum Dot Devices: A Review Background Quantum computing, as a disruptive technology in computing, holds the promise of far surpassing traditional high-performance computers in areas such as materials science, drug discovery, and big data search. Silicon-based quantum dots (Quantum Dot,...

A Zero External Magnetic Field Quantum Standard of Resistance at the 10⁻⁹ Level

Academic Background and Problem Statement In metrology, the quantum Hall effect (QHE) and the Josephson effect respectively provide quantum standards for electrical resistance (ohm) and voltage (volt). However, conventional quantum Hall resistance standards (QHRs) rely on strong external magnetic fields (typically requiring superconducting magnets ...

A Seamless Graphene Spin Valve Based on Proximity to Van der Waals Magnet Cr2Ge2Te6

Construction of a Seamless Graphene Spin Valve: Proximity Effects from van der Waals Magnet Cr₂Ge₂Te₆ Research Background and Significance Graphene, as a two-dimensional material, has significant potential applications in spintronics due to its excellent electron transport properties and long spin diffusion length. However, graphene’s intrinsic spi...

Fractional Quantum Hall Phases in High-Mobility n-Type Molybdenum Disulfide Transistors

Research Report on the Paper on Fractional Quantum Hall Phases in High Mobility n-Type Molybdenum Disulfide Transistors Background and Motivation At low temperatures, field-effect transistors (FETs) based on semiconducting transition metal dichalcogenides (TMDs) theoretically provide high carrier mobility, strong spin-orbit coupling, and intrinsic ...