ビル管理システムのための高速機械学習

学術的背景 世界的エネルギー危機の深刻化と環境保護意識の高まりに伴い、建築管理システム(Building Management Systems, BMS)の知能化と効率化が学術界と産業界の注目の的となっています。従来のBMSはルールベースの制御方法に依存しており、エネルギー価格の変動や気象条件の変化などの環境変化に動的に対応することができませんでした。近年、機械学習(Machine Learning, ML)と人工知能(Artificial Intelligence, AI)技術の急速な発展により、BMSの知能化に新たな可能性がもたらされています。しかし、既存のBMSはリアルタイムデータ処理と意思決定の応答速度において依然として課題を抱えており、特にリソースが制限された環境での低遅延・高スル...

人工知能駆動型意思決定モデルによる分散型エネルギー貯蔵投資の強化

学術的背景 グローバルなエネルギー構造が再生可能エネルギーへの転換を進める中、分散型エネルギー貯蔵(decentralized energy storage)の重要性がますます高まっています。従来の集中型エネルギー貯蔵システムとは異なり、分散型エネルギー貯蔵はエネルギー生産と貯蔵プロセスをローカル化し、大規模なシステム障害のリスクを軽減し、エネルギー供給の継続性と柔軟性を向上させます。しかし、分散型エネルギー貯蔵プロジェクトの複雑さとリソースの限界により、企業が戦略的優先順位を決定することが難しく、投資の失敗や非効率性を引き起こす可能性があります。 この問題を解決するため、著者らは人工知能(AI)を駆使した意思決定モデルを提案し、分散型エネルギー貯蔵投資に対する効果的な戦略的ガイダンスを提供...

Aczel-Alsina TノルムとT共ノルムに基づく直観的躊躇ファジィ情報のパワー集約演算子と物流サービスプロバイダー選択への応用

学術的背景 現代のサプライチェーン管理において、物流サービスプロバイダーの選択は複雑で重要な問題です。企業は、物流タスクを効率的に管理・実行できる第三者企業や組織を評価・選択する必要があります。しかし、現実の意思決定プロセスは多くの不確実性と曖昧性を伴い、従来の意思決定手法ではこれらの複雑な情報を効果的に処理することが困難です。この問題を解決するため、ファジィ集合理論(Fuzzy Set Theory, FST)およびその拡張形式である直観的ファジィ集合(Intuitionistic Fuzzy Sets, IFS)やためらいファジィ集合(Hesitant Fuzzy Sets, HFS)が、多属性意思決定(Multi-Attribute Decision Making, MADM)問題に広...

露天鉱山爆破作業におけるピーク粒子速度(PPV)予測のためのハイブリッドML技術の体系的調査

露天鉱山の爆破作業は鉱物の抽出において重要ですが、同時に環境や構造への大きなリスクを伴います。爆破過程で発生するピーク粒子速度(Peak Particle Velocity, PPV)は、爆破振動が周囲の構造物や環境に与える影響を評価するための重要な指標です。正確なPPVの予測は、爆破作業の最適化、環境破壊の軽減、および構造物の安全性の確保に重要な意義を持ちます。従来の予測手法は非線形関係や高次元データを扱う際に限界がありますが、機械学習(Machine Learning, ML)技術、特にハイブリッド機械学習手法はPPV予測において大きな可能性を示しています。本稿では、露天鉱山の爆破におけるPPV予測へのハイブリッド機械学習技術の応用を体系的にレビューし、その利点、課題、および今後の研究方...

ピタゴラス言語情報に基づくグリーンサプライヤー選択:量子グループ意思決定手法とMULTIMOORAアプローチ

世界的な環境問題が深刻化する中、企業はサプライチェーン管理においてますますグリーンで持続可能な発展を重視しています。グリーンサプライチェーン管理(Green Supply Chain Management, GSCM)は、企業の競争力を高め、持続可能な成長を実現するための重要な手段となっています。しかし、グリーンサプライヤーの選定(Green Supplier Selection, GSS)は、複数の意思決定者の異なる意見と不確実性を伴う複雑な多基準グループ意思決定問題(Multicriteria Group Decision-Making, MCGDM)です。従来のMCGDM手法は、専門家の意見の信頼性と曖昧さを扱うのに十分ではなく、現実の複雑な状況を正確に反映することが難しいです。 この...