Aczel-Alsina TノルムとT共ノルムに基づく直観的躊躇ファジィ情報のパワー集約演算子と物流サービスプロバイダー選択への応用

学術的背景 現代のサプライチェーン管理において、物流サービスプロバイダーの選択は複雑で重要な問題です。企業は、物流タスクを効率的に管理・実行できる第三者企業や組織を評価・選択する必要があります。しかし、現実の意思決定プロセスは多くの不確実性と曖昧性を伴い、従来の意思決定手法ではこれらの複雑な情報を効果的に処理することが困難です。この問題を解決するため、ファジィ集合理論(Fuzzy Set Theory, FST)およびその拡張形式である直観的ファジィ集合(Intuitionistic Fuzzy Sets, IFS)やためらいファジィ集合(Hesitant Fuzzy Sets, HFS)が、多属性意思決定(Multi-Attribute Decision Making, MADM)問題に広...

米国におけるトラックの電化が大気汚染の格差に与える影響

学術的背景 地球温暖化の進行と大気汚染問題の深刻化に伴い、交通分野における二酸化炭素排出量と汚染物質排出量の削減が、各国政府や研究機関の注目を集めています。米国の貨物輸送の主役である大型トラック(Class 8)は、特に微粒子状物質(PM2.5)や窒素酸化物(NOx)といったディーゼル排気ガスを大量に排出しており、これが気候変動を加速させるだけでなく、公衆衛生、特に社会的弱者コミュニティや少数派民族グループに不均衡な影響を与えています。電化はトラックの排気ガス削減の有効な手段とされていますが、電力網への依存により、発電施設からの汚染物質排出が増加し、汚染の負担が移転する可能性があります。したがって、トラックの電化が大気汚染の差異、特に社会的弱者コミュニティや少数派民族グループに与える影響を評...

視覚的道路シーンを用いたドライバーストレスの推定

視覚的道路シーンに基づくドライバーのストレス推定に関する研究 学術的背景 ドライバーのストレスは、交通事故、負傷、死亡の重要な要因です。研究によると、94%の交通事故はドライバーに関連しており、その中でも注意力散漫、内外の気晴らし、速度制御の不適切さなどがすべてドライバーのストレスと密接に関連しています。したがって、ドライバーのストレス状態を特定し管理することは、運転体験と安全性を向上させるために非常に重要です。しかし、既存のドライバーストレス認識手法は主に生理データ(心拍数、皮膚電気活動など)や車両操作データ(ハンドルやペダルの操作)に依存しており、これらの方法は通常ウェアラブルデバイスが必要であったり、運転環境全体を考慮する能力が不足しています。これに対して、視覚的道路シーンの分析は、非...

Lidarガイドによる視覚中心の3D物体検出のための幾何学的事前学習

Lidarガイドによる視覚中心の3D物体検出のための幾何学的事前学習

LiDARガイドによる幾何学的プレトレーニング法が視覚中心の3D物体検出性能を向上 背景紹介 近年、マルチカメラ3D物体検出は自動運転分野で広く注目を集めています。しかし、視覚ベースの手法はRGB画像から正確に幾何学的情報を抽出する際に依然として課題があります。既存の手法では通常、深さに関連するタスクで事前学習された画像バックボーンを使用して空間情報を取得しますが、これらの方法は視点変換における重要な問題を無視しており、画像バックボーンと視点変換モジュール間での空間知識のミスマッチによりパフォーマンスが低下しています。この問題を解決するために、本論文では新しい幾何学的認識型プレトレーニングフレームワーク「GAPretrain」を提案します。 論文の出典 本論文は、林麟彦、王会杰、曾佳らによっ...

非線形システムのための適応型複合固定時間RL最適化制御及び知能船舶自動操舵への応用

非線形固定時間強化学習最適化制御によるインテリジェント船舶自動操舵システムの研究 近年、インテリジェント自動操舵技術は自動化制御分野における研究の焦点の一つとなっています。複雑な非線形システムにおいて、特に固定時間内でシステムの安定性と性能最適化を実現するための最適化制御戦略の設計は、制御エンジニアと研究者にとって重要な課題となっています。しかし、既存の固定時間制御理論は、システム状態の収束を実現する際にリソース利用効率とのバランスを考慮していない場合が多く、このため過剰補償または補償不足の現象を引き起こし、システムの定常状態誤差を増加させる可能性があります。さらに、時間制限内での非線形不確実性の推定誤差最小化については、関連研究は依然として少ないのが現状です。したがって、本研究では、この重...