畳み込みニューラルネットワークに基づく臨床およびEEG特徴を用いた耐薬性てんかんの早期予測

研究背景及研究目的 てんかんは自発性で深刻な神経系の病気であり、反復発作を特徴とし、全世界で約5000万人が影響を受けています[1]。最近の抗てんかん薬(ASM)の進展にもかかわらず、薬物難治性てんかん(Drug-Resistant Epilepsy,DRE)は依然として20%から30%のてんかん患者に影響を与えています[1-3]。DRE患者は巨大な経済的、社会的および心理的負担に直面しており、確定診断に長期間の薬物試験が必要です。高リスクの患者を早期に識別することは、てんかん手術、神経調整またはケトジェニックダイエットなどの治療法の早期介入を可能にします。 過去の研究では、DREのリスク要因として、早期発病、高頻度の発作、脳波(EEG)の異常、神経欠陥、認知障害、外傷歴、頭蓋内構造異常など...

不安の分析と検出のためのEEGの改良されたアンサンブル経験モード分解に基づく機能的脳ネットワーク

改良された集合経験的モード分解に基づく脳機能ネットワークを用いた不安分析と検出 学術的背景と研究目的 現代生活のストレスの増加に伴い、不安症(Anxiety)は一般的な神経系の疾患として、グローバルな公衆衛生分野で急ぎ解決されるべき問題になっています。不安症は精神障害だけでなく、注意力、記憶、学習などの認知過程の異常な表現にも現れます。COVID-19のパンデミックの発生により、不安症の発病率も増加しました。統計によると、不安症の12か月以内の発病率は男性が4.80%、女性が5.20%となっています。しかし、不安症の原因はいまだ明確ではなく、自己治癒の確率も低いです。これらの複雑性と不確実性のため、早期検出と介入が非常に重要であるとされています。しかし、従来の不安検出方法は対面インタビューや...

新規診断された局所てんかん患者におけるオクスカルバゼピン治療結果の予測におけるEEGマイクロステートの役割

新規診断された局所てんかん患者におけるオクスカルバゼピン治療結果の予測におけるEEGマイクロステートの役割

EEG微状態が新診断の局在性てんかん患者におけるオクスカルバゼピン治療効果を予測する役割 序論 背景 局在性てんかん(focal epilepsy)は最も一般的なてんかんのタイプで、全てのてんかん症例の約60%を占めます。異なるてんかんのタイプに応じて、抗てんかん薬の選択も異なります。局在性てんかんの治療では、オクスカルバゼピン(oxcarbazepine、略してOXC)が広く使用されています。しかし、オクスカルバゼピンは約65%の患者で発作のない状態を達成することができますが、依然として多くの患者が良好な治療効果を得られていません。電生理モニタリング技術、例えば脳波(electroencephalography、EEG)は、てんかんの診断と管理において重要な役割を果たしています。 研究目的...

MRIからの神経膠腫におけるIDH状態予測のための多階層特徴探索と融合ネットワーク

多層特徴探索と融合ネットワークを用いたMRIにおけるIDH状態予測研究 研究背景 膠芽腫は成人における最も一般的な悪性原発性脳腫瘍です。2021年の世界保健機関(WHO)の腫瘍分類によると、腫瘍のサブタイプの区分には遺伝子型が重要な意味を持ち、とりわけイソクエン酸脱水素酵素(IDH)遺伝子型は膠芽腫の診断に極めて重要です。臨床研究は、IDH変異を持つ膠芽腫が特定の表現型遺伝子変異特性を通じて酵素活性、細胞代謝および生物特性に影響を与えることを示しています。IDH変異を持つ膠芽腫は、IDH野生型のものよりもテモゾロミドに対して感受性が高く、予後が良好です。現在、IDH状態の認定は主に侵襲的手術後に組織標本を用いた遺伝子シーケンシングまたは免疫組織化学分析に依存しています。しかし、侵襲的な操作は...

ダイナミックコントラスト増強磁気共鳴画像における薬物動態パラメータの正規化フローに基づく分布推定

在現代医療診断および臨床研究において、動的コントラスト強調磁気共鳴画像(Dynamic Contrast-Enhanced Magnetic Resonance Imaging, DCE-MRI)技術は、組織病理学に関する重要な情報を提供します。トレーサーキネティック(Tracer-Kinetic, TK)モデルをフィットさせることにより、時間系列MRI信号から薬物動態学(Pharmacokinetic, PK)パラメーターを抽出できます。しかし、これらの推定されたPKパラメーターは、信号対雑音比(Signal-to-Noise Ratio, SNR)、バックグラウンドT1時間、開始時間、動脈入力機能(Arterial Input Function, AIF)、およびフィットアルゴリズムなど...

3D MRI の分類のためのシャム輸送ドメイン適応フレームワーク: グリオーマおよびアルツハイマー病

Siamese-Transport領域適応フレームワークに基づく3D MRIによる膠芽腫およびアルツハイマー病の分類 研究背景 コンピュータ支援診断において、3D磁気共鳴画像法(MRI)によるスクリーニングは早期診断に重要な役割を果たし、さまざまな脳疾患の悪化を防止するのに有効です。膠芽腫は一般的な悪性脳腫瘍で、その治療法は腫瘍のグレードによって異なります。そのため、正確で効率的な3D MRI分類は医用画像分析において極めて重要です。しかし、従来の深層学習モデルは臨床における未ラベルデータに適用された場合、異なる装置やデータ収集パラメータの違いによる領域間不一致性のため、性能が著しく低下します。既存の方法は主に領域間の差異を減少させることに焦点を当てていますが、セマンティック特徴と領域情報の...