アルツハイマー病の画像分類のためのベイジアンテンソルモデリング

ベイズテンソルモデルに基づくアルツハイマー病の画像分類 はじめに 神経画像学研究は現代の神経科学の重要な部分であり、我々の脳構造と機能への理解を大いに豊かにしました。これらの非侵襲的なビジュアライゼーション技術を通じて、研究者は特定の神経および精神疾患のリスクをより正確に予測し、早期段階での介入と治療を行うことができるため、患者の健康と生活の質を改善することができます。特にアルツハイマー病(Alzheimer’s Disease、以下AD)の研究において、神経画像学は貴重な病理メカニズムの洞察を提供し、病状の進行を追跡し、早期症状を識別し、他の認知症の原因を区別することができます。 しかし、神経画像データの処理には、データの空間依存性、高次元性およびノイズなど複数の重大な課題があり、適切な神...

PEDアルゴリズムを用いた自閉症スペクトラム障害の診断バイオマーカーの特定

PEDアルゴリズムを用いた自閉症スペクトラム障害の診断バイオマーカーの特定

PEDアルゴリズムを用いた自閉スペクトラム症の診断バイオマーカーの識別 神経情報科学の領域では、自閉スペクトラム症(ASD)の研究は主に脳領域間の双方向接続関係に焦点を当てており、脳領域の高次相互作用異常にはあまり触れられていません。脳領域の複雑な関係を探るため、著者らは部分エントロピー分解(Partial Entropy Decomposition, PED)アルゴリズムを採用し、三つの脳領域(トリオード)の高次相互依存性を計算することで高次相互作用を捉えました。本論文では、PEDと代替検証法に基づく方法を提案し、単一の脳領域が三重脳領域に及ぼす影響を検証し、重要な三重脳領域を見つけました。さらに、超グラフモジュール最適化アルゴリズムを用いて高次脳構造を明らかにし、ASDでは右脳と左脳の接...

T1画像における脳組織分割のための強化空間ファジィC-均値アルゴリズム

脳組織分割のための強化型スペーシャルファジィC平均アルゴリズム研究報告 学術背景 磁気共鳴画像(MRI)は神経学において重要な役割を果たしており、特に脳組織の正確な分割において顕著です。正確な組織分割は脳損傷や神経変性疾患の診断にとって不可欠です。MRIデータの分割は、同様の強度、テクスチャ、および均一性を持つ異なる領域に画像を分割することを伴います。これは医学画像解析における重要なタスクです。特に、脳白質(White Matter, WM)、灰質(Gray Matter, GM)、および脳脊髄液(Cerebrospinal Fluid, CSF)などの脳組織の区別において、正確な組織分割と病変の分離は、医療専門家が脳損傷および神経変性疾患を診断する能力を大幅に向上させることができます。 し...

DataLadを用いた研究データ管理の教育:数年にわたる複数分野の取り組み

科学研究データ管理教育の多年にわたる多分野の取り組み 研究背景 現代神経科学の発展に伴い、研究データ管理(Research Data Management, RDM)は科学者にとって不可欠なスキルとなっています。しかし、研究データ管理の重要性にもかかわらず、これらの技術スキルは分野特化の大学院教育においてしばしば無視されがちです。そのため、ますます多くのコミュニティは、組織されたトレーニングの機会や自己学習材料を提供し、初期の研究者がこの知識とスキルを習得するのを支援しています。 マサチューセッツ工科大学(MIT)の「the missing semester of your cs education」は、この教育不足の一例です。さらに、現代のコンピュータとアプリケーションの高可用性は、ユーザ...

MRIO: 磁気共鳴画像取得および分析オントロジー

MRIO: 磁気共鳴画像取得および分析オントロジー

MRIO: 磁気共鳴イメージング取得および分析オントロジー 磁気共鳴イメージング(MRI)は、非侵襲的に組織の内部構造を三次元的に可視化するための生物医学的イメージング技術です。MRIは人間の脳の構造と機能の研究に広く用いられ、神経系疾患の診断においても強力なツールです。しかし、MRIデータを効果的に管理および分析する方法は常に課題となっています。この課題に対処するために、Alexander Bartnik らは「MRIO」と呼ばれる磁気共鳴イメージング取得および分析オントロジーを開発しました。 研究背景 MRI技術は、人体内部の画像を非侵襲的に取得できるため、臨床および研究において広く使用されています。臨床では、MRIは神経疾患の診断に用いられ、病変の位置と程度を評価して治療の指針を提供し...

オンラインと対面の交差点における実践的神経情報学教育:Neurohackademyからの教訓

Neurohackademy:オンラインとオフラインを組み合わせた神経情報学の教育 背景紹介 近年、人類神経科学はビッグデータの時代に突入しています。人類コネクトーム計画(Human Connectome Project)、青少年脳認知発達(ABCD)研究などのプロジェクトのおかげで、科学者たちは以前には想像もできなかった規模と範囲のデータセットを取得することが可能となりました。これらのデータセットは基礎および臨床研究において重要な科学的潜在力を持っています。しかし、これらのデータセットは研究者に対して新たな挑戦ももたらしています。データの生成、処理、アクセス、分析、理解などがその一例です。特に大きな課題として、「ビッグデータスキルギャップ」と呼ばれるものがあります。これらのデータセットを活...