軽量ポイントクラウドネットワークを使用した顔の3D局所構造運動表現による微表情認識

軽量級点群ネットワークに基づく3D領域構造運動表現の微表情認識への応用 学術的背景 微表情(Micro-expressions, MEs)は、人間の感情表現の中で一瞬的かつ微妙な顔の表情であり、通常1/25秒から1/5秒の間持続します。その自発性、迅速性、制御困難さにより、微表情はしばしば個人の真実の感情を明らかにするため、ヒューマンコンピュータインタラクション(Human-Computer Interaction, HCI)、心理学、刑事分析、ビジネス交渉などの分野で重要な役割を果たしています。しかし、微表情の低強度と短時間性により、その認識は非常に挑戦的なタスクとなっています。従来の微表情認識手法は主に2D RGB画像からの動き特徴抽出に依存しており、感情伝達における顔の構造とその動きの...

被験者間EEG感情認識のためのマルチスケール双曲コントラスト学習

複数スケールの双曲的コントラスト学習に基づく被験者間脳波感情認識に関する研究 学術的背景 脳波(Electroencephalography, EEG)は生理信号として、感情計算(Affective Computing)分野で重要な役割を果たしています。従来の非生理的な手がかり(顔の表情や声など)と比較して、EEG信号は高い時間分解能と客観性を持ち、人間の感情状態をより信頼性高く反映できます。しかし、EEG信号には顕著な個体差があり、これが被験者間(Cross-Subject)感情認識において課題となっています。異なる被験者のEEG信号は年齢、心理状態、認知特性などの多様な要因に影響され、事前学習モデルの新しい被験者に対する汎化能力が低下する原因となります。 この課題に対処するために、研究者...

相互情報に基づく多モーダル感情分析の分離表現学習

多模態感情分析における相互情報量に基づく分離表現学習:革新的研究 学術的背景 ソーシャルメディアの急速な発展に伴い、ユーザー生成のマルチメディアコンテンツ(ツイートや動画など)が急増しています。これらのマルチメディアデータは通常、視覚(画像)、音響(音声)、およびテキストの3つのモダリティで構成されています。これらのデータには豊富な感情情報が含まれており、それらを自動的に分析することが重要な課題となっています。多モーダル感情分析(Multimodal Sentiment Analysis, MSA)は、さまざまな信号を利用して潜在的な感情や情緒を特定することを目指します。しかし、この分野の核心となる課題の一つは、異なるモダリティの特徴を効果的に統合し、一貫した表現を得るための「多モーダル表現...

スペクトル時間変調を組み込んだ二重ストリームの頑健な音声感情認識

スペクトル-時間変調特徴を用いた二重ストリームによるロバストな音声感情認識に関する研究 学術的背景 音声感情認識(Speech Emotion Recognition, SER)は、人間の音声に含まれる感情的内容を分析して感情を識別する技術です。これは、ヒューマンコンピュータインタラクション、カスタマーサービス管理システム、および医療分野など、幅広い応用可能性を持っています。しかし、深層学習に基づくSERモデルは制御された環境では優れたパフォーマンスを示しますが、現実世界のノイズ条件下ではその性能が大幅に低下します。交通騒音やファンの音などのノイズは、音声信号を妨害し、感情認識システムの精度を大きく低下させます。したがって、ノイズ環境下でも堅牢なSERシステムの開発が重要な研究課題となってい...

可塑的な神経ネットワークにおける関係学習と迅速な知識再編成の神経メカニズム

神経メカニズムと関係学習:ニューラルネットワークにおける迅速な知識再構築 背景紹介 人間や動物は、限られた経験から項目間の関係(刺激、物体、イベントなど)を学ぶ驚異的な能力を持っており、構造化された一般化と迅速な情報統合を可能にします。この関係学習の基本となるのが順序学習で、推移的推論(例えば、a > b かつ b > c ならば a > c)やリストリンク(例えば、a > b > c と d > e > f が c > d を知ることで a > b > c > d > e > f に迅速に再構築される)を可能にします。この分野は長年研究されてきましたが、推移的推論と迅速な知識再構築の神経生物学的メカニズムは未だ不明確です。本論文では、神経変調を備えたシナプス可塑性(自己指向学習を可能にする...

豊富な帰納バイアスを用いた視覚言語モデルの学習

豊富な帰納的バイアスを用いた視覚と言語モデルの学習 研究背景と問題提起 近年、視覚と言語モデル(Vision-Language Models, VLMs)は、コンピュータビジョンおよび自然言語処理の分野で顕著な進展を遂げています。これらのモデルは大規模な画像-テキストペアに基づいて事前学習され、統一されたマルチモーダル表現空間を構築し、多様な下流タスクで優れたパフォーマンスを発揮します。しかし、少数ショット学習(few-shot learning)のシナリオでは、特定のタスクに適応させつつ良好な汎化能力を維持するためには、これらのモデルを効果的に調整する方法が依然として解決すべき課題となっています。 既存の手法は通常、プロンプトエンジニアリング(prompt engineering)やパラメ...