聴覚記憶の認識と予測的コーディングの時空間的脳階層

聴覚記憶の認識と予測的コーディングの時空間的脳階層

聴覚記憶の識別および予測符号化の脳の時空間階層構造 背景紹介 本研究は、人間の脳が記憶した音楽の連続性とその体系的な変化を識別する際の階層的な脳メカニズムを探ることを目的としています。視覚パターンの神経処理に関する研究は広範に行われている一方で、聴覚連続性の認識およびそれに関連する予測誤差の理解は未だに十分ではありません。聴覚システムは時間の経過と共に形成されるパターンと連続性から情報を抽出し、大脳の時間的な階層構造を理解するためのユニークな機会を提供します。関連する研究は、大脳が予測符号化理論(Predictive Coding Theory,PCT)を通じて内的モデルを常に更新し、外界の情報や刺激を予測していると仮定しています。 研究の出所 本論文の著者には、L. Bonetti、G. ...

難治性てんかん患者における発作開始ゾーンの局在化方法研究

近年来、がんこな間作性てんかん (refractory epilepsy) は医学界から注目されています。このてんかんは、適切な抗てんかん薬による治療を2回受けても、重度のてんかん発作が継続する状態と定義されています。薬物治療が無効な患者の場合、てんかん発作の起源領域 (seizure onset zone、SOZ) を正確に特定し、その領域を切除または破壊する治療法は治癒につながる可能性があります。しかし、米国では薬物難治性てんかん患者に対する一般的な手術評価法は、立体定位脳波 (stereoelectroencephalography、SEEG) 電極を用いて異なる脳領域のてんかん活動をモニタリングすることですが、この方法では十分な数のてんかん発作を検出する必要があり、患者は数日から数週...

臨床放射特性を用いた深層学習放射線学モデルによる膵管腺癌患者の潜在性腹膜転移の特定と検証

タイトルページ: 深層学習放射線組織学モデルと臨床放射線学的特徴を併せた膵管腺癌患者の潜在的腹膜転移の予測モデルの開発と検証 背景 膵管腺癌(Pancreatic Ductal Adenocarcinoma, PDAC)は極めて致死率の高い悪性腫瘍で、5年生存率は約11%です。予後不良の一部の理由は、80-85%の患者が症状が現れた時点で、すでに進行期の病気、切除不能、または転移(潜在的腹膜転移(Occult Peritoneal Metastases, OPM)を含む)が発生していることにあります。腹膜はPDACの第2の一般的な転移経路であり、約10-20%の患者が初診時に腹膜転移を示します。この部分の患者については、早期に腹膜転移を特定することは、不必要な手術を避けるための治療選択に大き...

手術室を混合現実環境に変える: 脳動脈瘤クリッピングのための前向き臨床調査

手術室を混合現実環境に変える: 脳動脈瘤クリッピングのための前向き臨床調査

手術室を混合現実環境に変える:脳動脈瘤クリッピング手術のための前向き臨床研究 脳動脈瘤の外科的治療は、神経外科の中でも非常に複雑で繊細な過程である。手術成績を改善するため、研究者は新しい技術やアプローチを絶えず探求している。近年、Mixed Reality(MR)技術の進歩により、手術室(Operating Room, OR)に新たなブレークスルーがもたらされた。特に、ヘッドマウンテッドディスプレイ(Head-Mounted Display, HMD)の使用により、外科医は患者の実際の解剖構造に仮想の三次元(3D)画像を重ね合わせることができ、空間認識とハンドリングの直感性が向上する。 研究の背景と目的 本研究の目的は、脳動脈瘤クリッピング手術における新しいMR-HMDの応用可能性、特に外科...

EEGによる聴覚注意検出のための注意誘導型グラフ構造学習ネットワーク

EEGによる聴覚注意検出のための注意誘導型グラフ構造学習ネットワーク

注意力ガイダンスによるグラフ構造学習ネットワークをEEGベースの聴覚注意検出に応用 学術的背景 “カクテルパーティー効果”は、複数の話者がいる環境で、人間の脳が選択的に一人の話者に注意を向け、他の人を無視する能力を表しています。しかし、聴覚障害者にとってこの状況は大きな課題となります。補聴器や人工内耳などの現代の聴覚補助機器は雑音除去に効果的ですが、リスナーが注目したいシグナルを区別することはできません。聴覚注意検出(Auditory Attention Detection、AAD)タスクは、この問題を解決する潜在能力を持っており、脳から直接注意に関連する情報を抽出します。神経科学研究によると、非侵襲的な神経記録技術である脳波(Electroencephalography、EEG)には、聴覚...

EEG解読のための深層学習を用いたユークリッド整列の体系的評価

EEG解読におけるユークリッド整列と深層学習の系統的評価 背景紹介 脳波(EEG)信号は、非侵襲性、携帯性、低コストな収集などの利点から、脳コンピューターインターフェース(BCI)タスクで広く利用されています。しかし、EEG信号には低い信号対雑音比、電極位置の影響を受けやすい、空間分解能が低いなどの欠点があります。深層学習(DL)技術の進歩に伴い、この技術はBCI分野で優れた性能を示し、場合によっては従来の機械学習手法を上回っています。しかし、DLモデルには大量のデータが必要であるという主な障害があります。複数の被験者データを使った転移学習(Transfer Learning、TL)は、データ共有によってDLモデルをより効率的に訓練できます。ユークリッド整列(Euclidean Alignm...