遺伝子セット機能の発見における大規模言語モデルの評価

大規模言語モデルを用いた遺伝子集合機能発見の探求:GPT-4の優れた性能 学術的背景 機能ゲノミクス(functional genomics)の分野では、遺伝子集合の富化解析(gene set enrichment analysis)が遺伝子の機能と関連する生物学的プロセスを理解するための重要な方法となっています。しかし、現在の富化解析はGene Ontology (GO) などといった文献に基づいて整理された遺伝子機能データベースに依存しており、これらのデータベースには不完全性や更新の遅れといった課題があります。このため、多くの遺伝子集合が従来のツールでは効果的に解析できず、これらの未定義の遺伝子集合が新たな生物学的知識の源泉となる可能性があります。 こうした背景のもと、近年、生成型人工知...

自己教師あり深層学習を用いたクライオ電子顕微鏡における優先配向問題の克服

単粒子冷凍電子顕微鏡における優先配向問題の克服:深層学習による革新的解決法 背景紹介 近年、単粒子冷凍電子顕微鏡(Single-Particle Cryo-EM)技術は、生体高分子を天然状態に近い条件下で原子分解能で解析できることから、構造生物学のコア技術として確立されました。しかし、実際の応用では、「優先配向」(Preferred Orientation)という技術的な壁に直面することが多いです。この問題の主な原因は、生体分子が冷凍電子顕微鏡のグリッド上で均等に分布せず、特定の方向のデータ収集が不十分になることです。この配向偏差は通常、試料調製プロセス中に分子が空気-水界面(Air-Water Interface, AWI)またはサポート膜-水界面との相互作用によって引き起こされます。 優...

多スケールフットプリントが明らかにするシス調節要素の組織

多スケールフットプリントが細胞分化と老化におけるシス調節要素の役割を明らかにする 背景紹介 遺伝子発現の調節は、細胞の運命と疾患発生の鍵となるメカニズムの一つであり、シス調節要素(cis-regulatory elements, CREs)がこの過程で重要な役割を果たしています。CREsは、転写因子やヌクレオソームなどの多様なエフェクタータンパク質と結合することで、遺伝子発現を動的に調節します。しかし、既存の研究方法では、特に単細胞レベルでこれらのエフェクタータンパク質のゲノム全体での結合動態を測定する際に限界があり、CREsの構造がその機能とどのように関連しているかを完全に理解することが困難でした。特に、細胞分化と老化の過程におけるCREsの役割については不明な点が多く残されています。 こ...

森林モニタリングにおける人工知能と地上点群の応用

人工知能と地上レーザースキャン点群データを用いた森林モニタリング:学術報告 学術的背景 地球規模の気候変動と森林資源管理の重要性が高まる中、精密林業(Precision Forestry)は現代の森林管理において重要な方向性となっています。精密林業は、高精度の森林データの収集と分析に依存しており、地上レーザースキャン(Terrestrial LiDAR, TLS)やモバイルレーザースキャン(Mobile LiDAR, MLS)技術の進歩により、森林モニタリングにこれまでにない詳細なデータが提供されるようになりました。しかし、これらの高密度な3次元点群データを処理することは依然として大きな課題であり、特に個々の木の分割、樹種分類、森林構造の分析などのタスクにおいて困難が生じています。 従来の手...

多モーダル深層学習による小児低悪性度神経膠腫の再発リスク予測の改善

深層学習を用いた小児低悪性度神経膠腫の術後再発予測 背景紹介 小児低悪性度神経膠腫(Pediatric Low-Grade Gliomas, PLGGs)は、小児において最も一般的な脳腫瘍の一つであり、すべての小児中枢神経系腫瘍の30%から50%を占めています。PLGGsの予後は比較的良好ですが、術後再発リスクは従来の臨床的、画像学的、および遺伝子学的要因では正確に予測することが困難です。術後再発の異質性により、特に補助療法や画像モニタリングに関する術後管理の意思決定が複雑になっています。そのため、術後再発リスクを正確に予測するツールを開発することは、患者管理の最適化と予後の改善にとって非常に重要です。 近年、深層学習(Deep Learning, DL)は、特に腫瘍のセグメンテーションや予...

Delaunay三角分割を用いた3D形状表現の学習

Delaunay三角分割に基づく3D形状表現の学習 学術的背景 コンピュータビジョンとグラフィックスの分野において、点群データから表面を再構築することは長年の課題です。従来の暗黙的な方法(例:Poisson表面再構築)は、暗黙的な関数を計算し、Marching Cubesアルゴリズムを使用して表面を抽出します。これにより、水密(watertight)なメッシュを生成できますが、複雑な構造を扱う際には細部の喪失や過度の平滑化が発生しやすいです。一方、明示的な方法(例:Delaunay三角分割)は、点群の三角分割を直接行い、メッシュを構築します。これにより、鋭い特徴や細部をより良く保持できますが、複雑なトポロジーにおいて三角形の接続性を推測することは依然として困難です。 近年、学習ベースの手法が...