アルゴリズムの透明性がユーザーエクスペリエンスと生理的反応に与える影響

アルゴリズムの透明性がユーザーエクスペリエンスと生理的反応に与える影響 学術的背景 感情計算(Affective Computing)技術の急速な発展に伴い、感情認識型タスク適応システム(Affect-aware Task Adaptation)が研究の注目を集めています。この種のシステムは、ユーザーの心理状態を多様な測定手段(例えば、生理信号や顔の表情など)で識別し、それに基づいてコンピュータタスクを調整することで、ユーザーエクスペリエンスを最適化します。たとえば、システムはユーザーの感情に基づいてゲームの難易度を動的に調整したり、認知負荷に応じてタスクの複雑さを変更したりできます。これまでの研究では、心理状態の認識とタスク適応の精度を向上させることでユーザー体験が大幅に改善されることが示...

音声感情認識のための音声的アンカードメイン適応

跨言語音声感情認識における音素アンカー領域適応に関する研究 学術的背景 音声感情認識(Speech Emotion Recognition, SER)は、インテリジェントエージェント、ソーシャルロボット、音声アシスタント、自動コールセンターシステムなど、幅広いアプリケーションで重要な役割を果たします。グローバル化の進展に伴い、異なる言語間での感情認識(Cross-lingual SER)の需要が増加しています。しかし、異なる言語間での感情表現や音響特性の違いが、主な課題となっています。従来の研究では、主に計算的な視点から特徴、ドメイン、ラベルの適応によって問題に対処してきましたが、言語間の潜在的な共通性については見過ごされていました。 本研究では、母音音素(vowel phonemes)を跨...

軽量ポイントクラウドネットワークを使用した顔の3D局所構造運動表現による微表情認識

軽量級点群ネットワークに基づく3D領域構造運動表現の微表情認識への応用 学術的背景 微表情(Micro-expressions, MEs)は、人間の感情表現の中で一瞬的かつ微妙な顔の表情であり、通常1/25秒から1/5秒の間持続します。その自発性、迅速性、制御困難さにより、微表情はしばしば個人の真実の感情を明らかにするため、ヒューマンコンピュータインタラクション(Human-Computer Interaction, HCI)、心理学、刑事分析、ビジネス交渉などの分野で重要な役割を果たしています。しかし、微表情の低強度と短時間性により、その認識は非常に挑戦的なタスクとなっています。従来の微表情認識手法は主に2D RGB画像からの動き特徴抽出に依存しており、感情伝達における顔の構造とその動きの...

認知タスク中の異質な神経応答からの潜在回路推論

認知タスクにおける異種の神経応答からの潜在回路推論 学術的背景 認知タスクにおいて、脳の高次皮質領域(例えば前頭前野皮質、prefrontal cortex, PFC)は、多様な感覚、認知、運動信号を統合します。しかし、個々のニューロンの応答はしばしば複雑で異種性(heterogeneity)を示します。つまり、それらは同時に複数のタスク変数に反応します。この異種性により、研究者は神経活動から行動を駆動する神経回路メカニズムを直接推測することが困難になります。従来の次元削減手法(dimensionality reduction methods)は、神経活動とタスク変数間の相関に依存していますが、これらの異種応答の背後にある神経回路接続を明らかにすることはできません。 この問題を解決するために...

神経集団活動の動的制約

神経集団活動の時間的ダイナミクス制約:ブレイン・コンピュータ・インターフェースが明らかにした神経計算メカニズム 学術的背景 脳の神経活動が時間とともにどのように進化するかは、知覚、運動、認知機能を理解する上での核心的な問題の一つです。長い間、神経ネットワークモデルでは、脳の計算プロセスがネットワーク接続によって形成される神経活動の時間的経過を含むと考えられてきました。この見方は、神経活動の時間的経過が破ることが難しいものであるべきだという重要な予測を立てています。しかし、この予測が実際の生物学的神経ネットワークにおいて成立するかどうかは、まだ直接検証されていません。この問題に答えるために、研究チームはブレイン・コンピュータ・インターフェース(Brain-Computer Interface,...