BEV-Locator:基于多视角图像的端到端视觉语义定位网络

一项基于多视图图像的端到端视觉语义定位研究 背景与研究意义 随着智能驾驶技术的迅速发展,自动驾驶汽车的精确定位能力成为研究和工业界的热点问题。准确的车辆定位不仅是自动驾驶的核心模块,同时也是高级驾驶辅助系统(ADAS)的重要组成部分。传统的基于视觉定位的方法通常依赖几何模型和复杂的参数调优,但在复杂的场景下,其鲁棒性和大规模部署能力有限。此外,受环境变化(如天气、光照条件等)影响,传统特征提取方法(例如SIFT(尺度不变特征变换)、SURF(加速鲁棒特征)、ORB(方向快速和旋转简要特征)等)在动态环境中表现有限。近年来,带有丰富语义信息的高精度地图(HD Maps, 高精地图)被证明能够增强定位的鲁棒性。然而,如何在多视图图像与语义地图之间实现高效的跨模态匹配,同时避免复杂的几何优化和多阶...

基于少量标注像素和点云的弱监督驾驶场景语义分割

基于少量像素标注与点云数据的驾驶场景弱监督语义分割 背景与研究问题 语义分割作为计算机视觉的重要任务之一,在自动驾驶等领域具有广泛应用。然而,传统的全监督语义分割方法需要大量的像素级标注,标注成本高昂。在弱监督语义分割(Weakly Supervised Semantic Segmentation, WSSS)中,通过较少的粗粒度标注(如图片标签、边框、点级标注等)实现像素级分割,极大地降低了标注成本。 现有的WSSS方法大多基于CAM(类激活图)生成初始分割种子,但在复杂的驾驶场景中,这种方法表现不佳。驾驶场景中的图像通常包含多种物体类别,且类别间的遮挡、重叠问题严重,导致现有基于图片标签的WSSS方法难以达到高精度分割效果。 针对这些问题,本研究提出了一种结合少量点标注和点云数据的新型W...

能够自主导航行走的轮腿机器人

能够自主导航行走的轮腿机器人

能够自主导航行走的轮腿机器人 背景介绍 城市化进程的加速让供应链物流尤其是最后一公里配送面临巨大挑战。随着交通压力增加和对更快配送服务需求的上升,尤其是室内和街道上的复杂路线给配送带来了难以解决的问题。传统的轮式机器人难以跨越复杂的障碍物,而仅靠腿式系统又无法达到所需的速度和效率。例如,ANYmal机器人虽具备一定的移动能力,但其最大行驶速度仅为平均人行速度的一半,且续航时间也有限。因此,需开发一种即能在平坦地面上高效运动又能跨越障碍物的机器人系统成为了研究的主要方向。 本文主要研究的是轮腿机器人,结合轮子和腿部的优势,使其在长距离运输中既能在中等地面上高速行驶,又能在复杂地形上保持灵活性。 论文来源 本文由Joonho Lee、Marko Bjelonic、Alexander Reske、...

基于移动网络学习时空动态以适应开放世界事件

基于移动网络学习时空动态以适应开放世界事件 研究背景 现代社会的出行服务(Mobility-as-a-Service,MaaS)体系由多种交通方式(如公共交通、网约车、共享单车等)无缝集成而成。为实现MaaS平稚运营,对多模态移动网络的时空动态建模是必不可少的。然而,现有方法要么隐式地处理不同交通方式之间的相互作用,要么假设这种交互作用是不变的。更有甚者,当发生开放世界事件(如节假日、恶劣天气、疫情等)时,人群的集体移动行为将发生显著偏离常态的情况,这使得该建模任务更加具有挑战性。 论文来源 本文由伊利诺伊大学厄巴纳 - 香槟分校地理与地理信息科学系的Zhaonan Wang、东京大学空间信息科学中心的Renhe Jiang、Xuan Song、Ryosuke Shibasaki,以及新南威...