EHR-HGCN: 電子カルテにおける異種グラフ畳み込みネットワークを使用したテキスト分類のための強化ハイブリッドアプローチ

EHR-HGCN: 電子カルテにおける異種グラフ畳み込みネットワークを使用したテキスト分類のための強化ハイブリッドアプローチ

EHR-HGCN:電子健康記録テキスト分類の新しいハイブリッド異種グラフ畳み込みネットワーク方法 学術的背景紹介 自然言語処理(NLP)の急速な発展に伴い、テキスト分類はこの分野の重要な研究方向の一つとなりました。テキスト分類は、文献の背後にある知識を理解するのを助けるだけでなく、生物医学テキスト、特に電子健康記録(Electronic Health Records, EHR)などの分野でも広く応用されています。既存の研究は主に双方向トランスフォーマーに基づくエンコード表現方法(BERTなど)や畳み込みニューラルネットワーク(CNN)を利用した深層学習方法に集中しています。しかし、これらの方法は医学長文の処理時に入力長さの制限や高い計算資源の需要に直面することが多いです。また、テキスト分類の...

知識グラフに基づく推薦を用いた生物医学的関係抽出

医学関係抽出と知識グラフ推薦を結合した研究報告 背景説明 医学分野において、文献の爆発的な増加により、研究者は自身の専門分野の最新の進展を追跡することが難しくなっています。自然言語処理(NLP)分野から見ると、進化する自動化ツールは非構造化テキストから関連情報を識別および抽出するのを助け、このタスクは関係抽出(Relation Extraction、RE)と呼ばれます。REの主要な目標はテキストから医学的な実体間の関係を抽出して分類し、生物医学プロセスの理解を深めることです。 現在、大多数の最先端の医学REシステムは深層学習手法を使用しており、主に同種の実体間の関係(例:遺伝子と薬剤など)を対象としています。しかし、これらのシステムは大部分がテキストから直接抽出した情報に限られており、専門分...

二重レベル相互作用認識異種グラフニューラルネットワークによる薬包推奨

医学パッケージ推薦システムの研究:二層次の相互作用意識に基づく異種グラフニューラルネットワーク 電子健康記録(EHRs)が医療分野で広く利用される中、それらから潜在的かつ価値のある医療知識を掘り起こし、臨床決定を支援する方法がディープラーニング技術の重要な研究方向の一つとなっています。個別化医療パッケージ推薦はこの分野の重要なタスクの一つであり、大量の医療記録を利用して各患者に最も安全かつ効果的な薬剤パッケージを選択することを目指しています。しかし、既存の医療パッケージ推薦方法は主にタスクを多ラベル分類またはシーケンス生成問題としてモデリングしており、主に個々の薬剤と他の医療エンティティとの関係に焦点を当てているため、薬剤パッケージと他の医療エンティティとの相互作用を見過ごしがちであり、推薦...

生物ネットワークからタンパク質知識を学習することによる薬物ターゲット親和性の予測

##生物ネットワークを学習してタンパク質知識を用い薬物-標的親和性を予測する 背景紹介 薬物-標的親和性(drug-target affinity, DTA)の予測は、新薬の発見過程において重要な位置を占めています。効率的かつ正確なDTA予測は、新薬開発の時間と経済的コストを大幅に短縮できます。近年、深層学習技術の爆発的発展により、DTA予測に強力なサポートが提供されています。既存のDTA予測方法は主に1Dタンパク質配列に基づく方法と2Dタンパク質構造図に基づく方法に分けられます。しかし、これらの方法は標的タンパク質の内在特性にのみ注目し、過去の研究で明らかにされているタンパク質相互作用の広範な先験知識を無視しています。 この問題に対して、本研究ではMSF-DTA(多源特徴融合に基づく薬物-...

ナレッジグラフに基づく説明可能でパーソナライズされた認知推論モデル: 一般診療の意思決定に向けて

ナレッジグラフに基づく説明可能でパーソナライズされた認知推論モデル: 一般診療の意思決定に向けて

全科診断意思決定に向けた知識グラフに基づく説明可能なパーソナライズド認知推論モデル 背景紹介 全科医学はコミュニティおよび家庭医療の重要な構成要素として、異なる年代、性別、臓器系統および各種疾患を包括します。その核心的な理念は、人を中心とし、家庭を単位とし、長期にわたる包括的な健康の維持と促進を強調することです。しかし、既存の証拠によると、中国の初級衛生保健(Primary Health Care, PHC)の質はまだ満足のいくレベルに達していません。臨床診断と治療の正確性に関して顕著な向上の余地があります。この問題に対応するために、人工知能に基づく意思決定ツールが徐々に全科医の疾患診断の強力な補助となっています。しかし、既存の研究は主に二つの問題を抱えています。一つは十分な拡張性と説明能力...

知識強化型グラフトピック変換機による説明可能な生物医学テキスト要約

知識強化型グラフトピック変圧器の説明可能な生物医学テキスト要約への応用 研究背景 生物医学の文献発表量が増加し続けているため、自動生物医学テキスト要約タスクの重要性が高まっています。2021年にはPubMedデータベースだけで1,767,637本の論文が発表されました。既存の事前学習言語モデル(Pre-trained Language Models、PLMs)を用いた要約方法は性能を向上させていますが、特定の分野の知識の捕捉や結果の説明可能性において顕著な制限があります。これにより、生成された要約が一貫性に欠け、冗長な文章や重要な分野知識の欠落を含む可能性があります。さらに、変圧器モデルのブラックボックス特性はユーザーが要約生成の理由や方法を理解するのを困難にするため、生物医学テキスト要約に...