Réseau Fonctionnel du Cerveau Basé sur la Décomposition Modale Empirique Améliorée de l'EEG pour l'Analyse et la Détection de l'Anxiété

Réseau fonctionnel cérébral basé sur la décomposition modale empirique améliorée pour l’analyse et la détection de l’anxiété Contexte académique et objectifs de la recherche Avec l’augmentation du stress de la vie moderne, l’anxiété, en tant que maladie neurologique courante, devient de plus en plus un problème urgent à résoudre dans le domaine de ...

Modèle d'évaluation basé sur l'apprentissage profond pour l'identification en temps réel des apprenants visuels utilisant l'EEG brut

Dans l’environnement éducatif actuel, comprendre le style d’apprentissage des étudiants est crucial pour améliorer leur efficacité d’apprentissage. En particulier, l’identification des styles d’apprentissage visuels (visual learning style) aide les enseignants et les étudiants à adopter des stratégies plus efficaces dans le processus d’enseignement...

ADFCNN : Réseau de neurones convolutionnels à fusion double échelle basé sur l'attention pour l'interface cerveau-ordinateur basée sur l'imagerie motrice

ADFCNN : Réseau de neurones convolutionnels à fusion double échelle basé sur l'attention pour l'interface cerveau-ordinateur basée sur l'imagerie motrice

L’interface cerveau-ordinateur (Brain-Computer Interface, BCI) est une technologie de communication et de contrôle émergente qui a gagné en popularité ces dernières années. Parmi les BCI basés sur les caractéristiques électrophysiologiques (comme l’électroencéphalogramme, EEG), l’imagerie motrice (Motor Imagery, MI) est une branche importante, util...

Les changements dans les réseaux fonctionnels du cerveau induits par une tâche d'intégration visuomotrice

Réorganisation des réseaux cérébraux dans les tâches visuomotrices Contexte de recherche L’exécution du mouvement est une fonction cognitive complexe qui dépend de l’activation coordonnée de régions cérébrales spatialement proches et éloignées. Les tâches d’intégration visuomotrice nécessitent le traitement et l’interprétation des entrées visuelles...

GCTNet : un réseau de transformateur de convolution en graphes pour la détection des troubles dépressifs majeurs à partir des signaux EEG

GCTNet:Réseau de Transformateurs à Convolution de Graphe pour la Détection de la Dépression Majeure Basée sur des Signaux EEG Contexte de la Recherche La dépression majeure (Major Depressive Disorder, MDD) est une maladie mentale courante caractérisée par des humeurs dépressives significatives et persistantes, touchant plus de 350 millions de perso...