PLTCRB:基于最优平均通信复杂度的实用分布式随机信标

分布式随机信标(Distributed Randomness Beacon)研究的前沿突破 —— 大规模优化通信复杂度的实用方案 在当今众多技术领域中,可信随机数生成器(Randomness Beacon)是一项关键工具,对密码学、区块链、电子投票及众多应用的安全性具有重要作用。随机数生成器需要满足偏差抗性、不可预测性和公开可验证性。然而,传统的分布式随机信标(Distributed Randomness Beacon,简称DRB)方案通常依赖复杂的通信流程,或借助于公共公告板(Public Bulletin Board,简称PBB)来保障安全性,在参与者规模较大时容易受到性能瓶颈的制约。这一问题促使研究者们寻找更高效、更实用的新方案。 近日,来自上海交通大学电子信息与电气工程学院的Zhey...

二阶非线性多代理系统在受限区域内基于观察器的事件触发时间变化队形跟踪控制方法

多代理系统受限区域内时间变化队形跟踪控制研究综述 多代理系统(Multi-Agent Systems, MAS)的协调与合作控制近年来备受关注,这种兴趣不仅来源于其在多自主水下航行器、多旋翼飞行器等工程领域的广泛应用,也在于其在提升自动化效率、完成复杂任务和减少资源损耗方面的潜力。然而,在复杂和动态的实际环境中,对多代理系统的队形跟踪控制提出了更高的要求,如如何应对外部未知干扰、避免碰撞,以及在受限区域内完成任务。 本文《Observer-based event-triggered formation tracking control for second-order multi-agent systems in constrained region》为此研究领域提供了新的解决方案。这篇论文...

BEV-Locator:基于多视角图像的端到端视觉语义定位网络

一项基于多视图图像的端到端视觉语义定位研究 背景与研究意义 随着智能驾驶技术的迅速发展,自动驾驶汽车的精确定位能力成为研究和工业界的热点问题。准确的车辆定位不仅是自动驾驶的核心模块,同时也是高级驾驶辅助系统(ADAS)的重要组成部分。传统的基于视觉定位的方法通常依赖几何模型和复杂的参数调优,但在复杂的场景下,其鲁棒性和大规模部署能力有限。此外,受环境变化(如天气、光照条件等)影响,传统特征提取方法(例如SIFT(尺度不变特征变换)、SURF(加速鲁棒特征)、ORB(方向快速和旋转简要特征)等)在动态环境中表现有限。近年来,带有丰富语义信息的高精度地图(HD Maps, 高精地图)被证明能够增强定位的鲁棒性。然而,如何在多视图图像与语义地图之间实现高效的跨模态匹配,同时避免复杂的几何优化和多阶...

基于卫星助力的6G广域边缘智能:面向远程物联网服务的动态感知任务卸载与资源分配

基于卫星助力的6G广域边缘智能:面向远程物联网服务的动态感知任务卸载与资源分配

卫星支持的6G宽域边缘智能,面向远程物联网服务的动态感知任务卸载与资源分配 背景介绍 随着6G移动通信网络的到来,传统的物联网(IoT,Internet of Things)体系结构正逐渐向集成全球连接与广泛人工智能(AI)能力的智能万物互联(IoE,Internet of Everything)新范式转变。然而,地面网络在覆盖范围上存在局限性,尤其是在复杂地形和偏远地区无法实现全面覆盖。近地轨道(LEO,Low Earth Orbit)卫星的快速技术发展为解决这一问题带来了新的希望。通过非地面网络(NTN,Non-Terrestrial Networks)的支持,LEO卫星能够为全球用户提供无缝连接、大容量通信和高效计算服务,满足远程环境监控、智能农业等应用的需求。 但是,广域物联网应用带...

E-Predictor:Pull Request接受的早期预测方法

早期预测Pull Request接受的研究突破 近年来,开源软件(Open-Source Software, OSS)开发逐渐成为主流的软件开发模式之一,这种模式极大地依赖于开发者之间的协作。而Pull Request(PR)的机制被广泛应用于分布式软件开发中,以提升协作效率。在GitHub等开源平台上,PR允许开发者提交代码变更请求,由项目维护者(管理员)进行代码审查并决定是否将代码合并到主分支中。然而,随着开源项目活跃度的提高,PR的数量急剧增长,这使得管理员的工作负担加重,并且导致PR处理的时间延迟。如何高效地管理和预测PR的接受状态,已成为研究者和开发者关注的热点问题。 基于这一背景,来自浙江大学区块链与数据安全国家重点实验室的Kexing Chen、Lingfeng Bao、Xin...

从复杂网络视角分析iOS应用商店的推荐关系

解析iOS应用商店推荐关系的复杂网络研究 背景介绍 移动应用程序(简称移动App)是现代互联网生态系统中的重要组成部分。然而,随着移动应用数量的爆炸式增长,用户在应用商店中找到所需应用变得越来越困难,同时开发者的应用程序也面临着难以被发现的挑战。为了改善用户的体验,大多数应用商店会根据用户行为或其他算法,提供应用推荐功能。例如,iOS应用商店的“你可能还喜欢”(”You Might Also Like”)推荐机制展示了与某一特定应用相关的其他应用,这形成了一种推荐关系网络。 尽管应用推荐对用户行为和应用程序的市场表现有重大影响,已有的研究对推荐关系网络的深层次特性关注较少。研究者希望通过解析这种推荐网络,了解它与用户行为的关系,并探索如何利用推荐机制改进应用发现过程或优化应用市场监管。本研究...