Chemical Space-Property Predictor Model of Perovskite Materials by High-Throughput Synthesis and Artificial Neural Networks

Chemical Space-Property Predictor Model of Perovskite Materials by High-Throughput Synthesis and Artificial Neural Networks

Academic Background Perovskite materials have attracted extensive attention due to their wide applications in solar cells and other electronic devices. Their optical properties (such as bandgap and lattice vibrations) can be flexibly modulated by tuning the chemical composition. Although the prediction of optical properties from perovskite structur...

Boosting Narrow-Band Near-Infrared-Emitting Efficiency of Thulium by Lattice Modulation for Reflective Absorption Bioimaging

Boosting Narrow-Band Near-Infrared-Emitting Efficiency of Thulium by Lattice Modulation for Reflective Absorption Bioimaging

Research Background Near-infrared (NIR) light holds significant application value in the biomedical field, particularly in non-invasive high-resolution imaging. NIR light can penetrate biological tissues and exhibits notable absorption differences for oxygenated and deoxygenated hemoglobin at specific wavelengths (e.g., 800 nm), making it an ideal ...

Structural, Optical, and Antibacterial Properties of NiO and BaO Doped NiO Prepared by Co-Precipitation Method

Academic Background Nickel oxide (NiO), as a p-type semiconductor, has garnered significant attention due to its exceptional optical properties, chemical stability, and extensive applications in optoelectronics, photocatalysis, and biosensors. NiO’s high transparency, adjustable electrical conductivity, and wide bandgap make it an ideal material fo...

Harnessing the Effects of CD-Doped and Ag-Coated CeO2 (IV) Nanoparticles for Enhanced Nitrophenol Reduction, Photocatalytic Degradation, and Other Potential Biological Applications

 

Academic Background With the rapid development of nanotechnology, the potential applications of nanomaterials in environmental remediation, biomedicine, and energy conversion have garnered increasing attention. Among these, cerium oxide (CeO₂) nanoparticles have become a research hotspot due to their unique redox properties, high stability, and exc...

Structure and Optical Properties of an Ag135Cu60 Nanocluster Incorporating an Ag135 Buckminsterfullerene-like Topology

Metal nanoclusters are nanoscale materials that bridge the gap between molecules and metals, exhibiting unique physicochemical properties, especially in the study of the relationship between atomic structure and physical properties. In recent years, researchers have shown great interest in organic ligand-protected metal nanoclusters due to their pr...