Power Aggregation Operators Based on Aczel-Alsina T-Norm and T-Conorm for Intuitionistic Hesitant Fuzzy Information and Their Application to Logistics Service Provider Selection

Academic Background In modern supply chain management, the selection of logistics service providers is a complex and critical issue. Enterprises need to evaluate and choose third-party organizations capable of efficiently managing and executing logistics tasks. However, the decision-making process in reality often involves significant uncertainty a...

Dombi Weighted Geometric Aggregation Operators on the Class of Trapezoidal-Valued Intuitionistic Fuzzy Numbers and Their Applications to Multi-Attribute Group Decision-Making

Academic Background In modern engineering and management fields, decision-making problems are often accompanied by uncertainty and ambiguity. Traditional fuzzy set theory has certain limitations when dealing with these issues, especially in complex Multi-Attribute Group Decision-Making (MAGDM) problems. Intuitionistic Fuzzy Set (IFS), as an extende...

A Systematic Survey of Hybrid ML Techniques for Predicting Peak Particle Velocity (PPV) in Open-Cast Mine Blasting Operations

Blasting operations in open-cast mines are crucial for mineral extraction but also come with significant environmental and structural risks. The peak particle velocity (PPV) generated during blasting is a key metric for assessing the impact of blasting vibrations on surrounding structures and the environment. Accurate PPV prediction is essential fo...

An Enhanced Framework for Real-Time Dense Crowd Abnormal Behavior Detection Using YOLOv8

Academic Background With the increasing demand for public safety, especially during large-scale religious events such as the Hajj pilgrimage, abnormal behavior detection in dense crowds has become a critical issue. Existing detection methods often perform poorly under complex conditions such as occlusion, illumination variations, and uniform attire...

Gene Selection for Single Cell RNA-seq Data via Fuzzy Rough Iterative Computation Model

Background Introduction Single-cell RNA sequencing (scRNA-seq) technology has been widely applied in biomedical research in recent years, as it can reveal the heterogeneity of gene expression at the single-cell level, providing an important tool for understanding cell types, cell states, and disease mechanisms. However, scRNA-seq data is characteri...

Scalable Multi-Modal Representation Learning Networks

Academic Background In the field of artificial intelligence, Multi-modal Representation Learning (MMRL) is a powerful paradigm aimed at mapping inputs from different modalities into a shared representation space. For example, in social networks, users often share both images and text simultaneously. Through multi-modal representation learning, mode...