進化的多目的最適化による移民再定住

多目的進化的最適化による移民定住問題解決の新たなフレームワークに関する研究報告 グローバル化の進展が加速し、社会経済的背景が変化する中、移民(migrants)現象は無視できない世界的なトレンドとなっています。人道的支援の観点や、グローバル経済の持続可能な発展の観点から、移民を効果的に管理し定住させることは、複雑で重要な課題となっています。統計データによると、2019年現在、国際移民の総数は2.72億人に達しており、従来の予測をはるかに上回る成長を示しています。そして、この現象は将来も続くとされています。しかし一方で、移民定住のプロセスには多くの課題が伴います。例えば、どのように移民の雇用率を向上させるのか、またどのように適切な定住地に移民を合理的に配置するのかといった問題です。これらの問い...

関係グラフ学習を用いたハイブリッド環境における強化学習型マルチエージェント協調ナビゲーション

マルチエージェントハイブリッド環境協調ナビゲーション研究: 関係グラフ学習に基づく強化学習の新しいアプローチ モバイルロボット技術は、人工知能分野の進展とともに応用ブームを迎えています。その中で、ナビゲーション能力はモバイルロボット研究の核心的なホットスポットの1つです。従来のナビゲーション手法は、動的環境、障害物回避、複数ロボットの協調タスクに直面した際、アルゴリズムの複雑性、計算資源の消費、モデルの汎化性という問題に直面しやすいです。これらの課題を解決するため、Central South UniversityとZhejiang University of Technologyの研究チームは、関係グラフアテンションネットワーク(Graph Attention Network, GAT)に基...

深層再帰強化学習とフェデレーションラーニング補助を活用した産業用IoTトラフィック侵入検出手法

深層循環型強化学習と連合学習を用いた産業IoTトラフィックの侵入検知手法 学術背景 産業用IoT(Industrial Internet of Things, IIoT)の急速な発展は、スマート工場や産業システムに大きな変革をもたらしました。IIoTは、インターネットを介してさまざまな産業デバイスを接続し、データ交換、遠隔制御、インテリジェントな意思決定を実現しました。しかし、このシームレスな接続性と膨大なデバイスネットワークは、産業システムがより複雑で多様なサイバーセキュリティリスクに直面する結果となりました。現実のIIoTシナリオにおいて、ネットワーク攻撃はデータ漏洩、データ操作、サービス拒否(denial of service, DoS)、および工場の生産中断などの深刻な影響を引き起こ...

非線形システムのための適応型複合固定時間RL最適化制御及び知能船舶自動操舵への応用

非線形固定時間強化学習最適化制御によるインテリジェント船舶自動操舵システムの研究 近年、インテリジェント自動操舵技術は自動化制御分野における研究の焦点の一つとなっています。複雑な非線形システムにおいて、特に固定時間内でシステムの安定性と性能最適化を実現するための最適化制御戦略の設計は、制御エンジニアと研究者にとって重要な課題となっています。しかし、既存の固定時間制御理論は、システム状態の収束を実現する際にリソース利用効率とのバランスを考慮していない場合が多く、このため過剰補償または補償不足の現象を引き起こし、システムの定常状態誤差を増加させる可能性があります。さらに、時間制限内での非線形不確実性の推定誤差最小化については、関連研究は依然として少ないのが現状です。したがって、本研究では、この重...

多層エンセンブルメンバーシップ推論攻撃

科学論文を深く掘り下げる:MEMIA: Multilevel Ensemble Membership Inference Attack 研究背景の紹介 デジタル技術の急速な発展に伴い、人工知能(AI)や機械学習(ML)は医療、金融、小売、教育、そしてソーシャルメディアなどのさまざまな分野に浸透しています。しかし、これらの技術の広範な利用により、プライバシー漏洩のリスクがますます顕著となっています。多くの研究では、機械学習モデルが対抗的攻撃に弱いことが示されており、その中でも重要なプライバシー攻撃の形式として、会員推論攻撃(Membership Inference Attack, MIA) が注目されています。この攻撃は、ターゲットモデルの出力分布を解析することで、特定のデータサンプルがモデル...

ポリシーコンセンサスベースの分散型決定論的マルチエージェント強化学習

戦略合意に基づく分散型決定性マルチエージェント強化学習研究レポート 強化学習(Reinforcement Learning, RL)は近年、ロボティクス、スマートグリッド、自動運転などの多くの分野で顕著な進展を遂げています。しかし、現実のシナリオでは、マルチエージェント(Multi-Agent Reinforcement Learning, MARL)の協調学習がしばしば要求されます。このような問題の中心的な課題は、通信能力の制約やプライバシー保護の条件下で、効率的なマルチエージェント協調強化学習アルゴリズムを設計することです。現在の多くのMARLアルゴリズムは、広く使用されている集中型訓練-分散型実行(Centralized Training with Decentralized Exec...