基于SHAP误差补偿方法的改进可解释电价预测模型

基于SHAP的电力价格预测模型改进研究及其可解释性分析 背景与研究动机 电力市场中的价格预测模型近年来成为研究热点,尤其是考虑到电力市场波动对利益相关方的财务影响。特别是,在欧洲能源市场中,受能源危机和地缘政治影响,最近几年燃料价格急剧上升,导致电力市场的价格波动性显著增加。即使是1%的预测误差,也可能对发电公司、负荷服务实体和交易公司产生巨大的财务后果。例如,对于用电量达到1GW的公司而言,仅1%的预测改进便可带来每年约1200万美元的节省。因此,提高电力价格预测(Electricity Price Forecasting,EPF)模型的精准度对市场参与者来说至关重要。 虽然基于机器学习(Machine Learning,ML)和深度学习(Deep Learning)技术的EPF模型在预测...

标签分布学习为何在分类中具有更好的泛化性

理解标签分布学习为何在分类中具有更好的泛化性能 背景介绍 在人工智能和机器学习领域,分类问题一直是研究者关注的核心课题之一,随着多标签学习(Multi-label Learning,MLL)和单标签学习(Single-label Learning,SLL)的不断发展,如何有效处理标签之间复杂的关系成为了一项重要挑战。然而,传统的单标签学习模型往往仅关注最相关的标签,而忽略了标签间的模糊性和相关性信息。这种局限性对现实世界中许多复杂任务的解析和解决形成了阻碍。 为了解决这一问题,标签分布学习(Label Distribution Learning,LDL)被提出。与SLL和MLL不同,LDL通过为每个数据实例分配一个标签分布(每个标签分配一个实数值,表示标签的相关程度)来全面刻画实例与标签之间...

基于单片3D IGZO-RRAM-SRAM集成架构实现稳健且高效的计算存储

基于单片集成的三维IGZO-RRAM-SRAM计算存储新架构研究:提高神经网络计算效率的突破 背景与研究动机 随着神经网络(Neural Network, NN)在人工智能领域应用的不断深入,传统计算架构难以满足其在能耗、速度和密度方面的需求。这促使研究者将目光投向计算存储(Compute-In-Memory, CIM)芯片技术。CIM通过将计算单元与存储单元集成在一个架构中,避免大量数据在存储与计算单元间传递的“存储墙”效应,从而显著提高系统效率。已有CIM架构主要基于静态随机存取存储器(Static Random Access Memory, SRAM)、电阻随机存取存储器(Resistive Random Access Memory, RRAM)和氧化铟镓锌(Indium-Galliu...

神经网络驱动的白内障手术显微系统

神经网络驱动的白内障手术显微系统

基于深度神经网络的微导航显微手术系统——助力白内障手术精确性迈上新台阶 学术背景与研究问题 白内障是全球范围内导致失明的主要原因之一。如今,采用超声乳化术(phacoemulsification)结合人工晶状体植入(IOL)的手术方法已经成为治疗白内障的主要手段。这一方案不仅能够显著提高患者的视觉质量,还能有效降低手术并发症的发生率。然而,手术的效果高度依赖于其精细操作和眼球的空间定位与定向。手术过程中诸如角膜切口的位置、囊膜撕裂(capsulorhexis)的大小和位置、以及人工晶状体的角度对术后视觉恢复至关重要。 目前的眼科手术显微镜大多依赖于手术医生的经验和人工标记。这种方式面临众多挑战,尤其是在遇到复杂临床场景时,例如眼球旋转、视觉场景不完全、角膜畸变或外部遮挡等。此外,已有的商用显...

基于边界回归和结构重参数化的细胞核实例分割模型RepsNet

基于边界回归和结构重参数化的细胞核实例分割模型RepsNet

基于边界回归与结构重参数化的细胞核实例分割模型RepsNet 学术背景 病理诊断是肿瘤诊断的金标准,而细胞核实例分割是数字病理分析和病理诊断中的关键步骤。然而,模型的计算效率和处理重叠目标的能力是当前研究中的主要挑战。为了解决这些问题,本文提出了一种基于细胞核边界回归和结构重参数化的神经网络模型RepsNet,用于在H&E染色的组织病理学图像中进行细胞核的分割和分类。 细胞核的分布和形态特征(如密度、核质比、平均大小和多形性)不仅对评估癌症分级有用,还能预测治疗效果。然而,病理图像通常具有细胞核广泛粘连、种类多样、形状多变以及细胞质背景与细胞核前景对比度低等特点,这些特征使得细胞核实例分割变得极为困难。 论文来源 本文由Shengchun Xiong、Xiangru Li、Yunpeng Z...