深度学习模型揭示语义饱和的机制

深度学习模型揭示语义饱和的机制

深度学习模型揭示语义饱和机制 语义饱和(semantic satiation),即一个词或短语在被重复很多次后失去意义这一现象,是一种众所周知的心理学现象。然而,导致这一机制的微观神经计算原理仍然未知。本文使用连续耦合神经网络(continuous coupled neural network, CCNN)建立深度学习模型,研究语义饱和的机制,并用神经元成分精确描述这一过程。研究结果表明,从介观角度来看,语义饱和可能是一个自下而上的过程,与现有的宏观心理学研究认为语义饱和是一个自上而下的过程不同,本文的模拟采用与经典心理学实验类似的实验范式,观察到相似的结果。语义目标的饱和类似于本文网络模型用于物体识别的学习过程,依赖于对象的连续学习和切换,神经耦合的增强或削弱影响饱和。综上,神经和网络机制...

先进最优跟踪结合神经网络评价技术用于非对称约束零和博弈

学术报告:先进最优跟踪结合神经网络评价技术用于非对称约束零和博弈 背景与研究问题 在现代控制领域,博弈论是研究智能决策者之间竞争与合作的数学模型,其中涉及至少两个玩家的互动决策问题。近年来,微分博弈在控制领域引起了越来越多的关注。当我们面对复杂受扰动系统的最优控制问题时,通常将其视为零和博弈(Zero-Sum Game, ZSG)。如果某系统的控制问题涉及多种控制策略且无扰动时,则被称为非零和博弈(Non-ZSG)。然而,由于真实系统中常存在各种扰动,因此进一步考虑ZSG问题以减轻扰动对系统性能的影响非常重要。 尤其在连续时间(Continuous-Time, CT)非线性系统中,传统动态规划方法尽管非常有价值,但在解决非线性最优控制问题时,常因为维数灾难(Curse of Dimensio...

滑模控制在不确定分数阶反应扩散忆阻神经网络中的应用

滑模控制在不确定分数阶反应扩散忆阻神经网络中的应用 近年来,随着神经网络在各种领域的广泛应用,对其控制和稳定性研究也越来越受到关注。分数阶(fractional-order, FO)忆阻神经网络(memristor neural networks, MNNs)由于其能够模拟生物神经突触的特点,在信息处理和学习等方面展示了独特的优势。然而,MNNs 在应用中面临诸多挑战,如系统的不确定性、信号传输的时滞以及复杂的时空演化特性,这些因素可能导致网络的不稳定和性能下降。因此,研究一种强鲁棒性的控制方法来解决这些问题具有重要的理论和实际意义。 在背景介绍部分,需要首先介绍忆阻器(memristor)的基本概念及其在神经网络中的应用。忆阻器作为电感、电容、以及电阻之外的第四类电子元件,由Chua于19...

一种用于流体模拟的基于注意力机制的双流水线网络

背景与研究动因 在物理学中,了解流体运动对于理解我们的环境以及我们如何与其进行交互至关重要。然而,传统的流体模拟方法由于其高计算需求,在实际应用中存在局限性。近年来,物理学驱动的神经网络被认为是一种有前途的数据驱动方法来理解复杂的自然现象。本文的作者受到平滑粒子流体动力学(SPH)方法的启发,提出了一种基于注意力机制的双管道网络架构——DualFluidNet,用于解决流体模拟中的全局控制和物理定律约束之间平衡的问题。 论文信息来源 本文由来自西安交通大学软件工程学院的Yu Chen、Shuai Zheng、Menglong Jin、Yan Chang和Nianyi Wang撰写,发表在2024年《Neural Networks》期刊上。该论文提出并探讨了一种创新的3D流体模拟方法。 研究方...

适应性识别和优化不良区域以实现准确的立体匹配

适应性识别和优化不良区域以实现准确的立体匹配

适应性识别和优化不良区域以实现准确的立体匹配 研究背景和动机 随着计算机视觉技术的快速发展,立体匹配技术因其高准确性、成本效益及非侵入性,在机器人、航天、自动驾驶和工业制造等诸多领域中发挥了至关重要的作用。然而,立体匹配在处理遮挡区域、模糊区域时,像素对之间的一致性约束变得不可靠,导致隐藏对应关系探索的困难。因此,尽管在卷积神经网络(CNN)和基于变换器(Transformer)的研究进展迅速,多数方法在处理不良区域时仍存在性能瓶颈。为了应对这一挑战,研究团队引入了一种误差区域特征优化机制以提供上下文特征,从而改进不良区域的立体匹配效果。 研究来源和简介 本文题为”Adaptively Identify and Refine Ill-Posed Regions for Accurate St...