多模态MRI揭示维持人类意识清醒状态的脑干连接

多模态MRI揭示维持人类意识清醒状态的脑干连接

脑科学的重大突破:多模态MRI揭示维持人类意识清醒的脑干连接 背景介绍 意识包含觉醒(wakefulness)和意识(awareness)两个基本组成部分。尽管过去两十年科学家们已经取得了在大脑皮层网络方面的显著进展,进一步理解了意识中觉醒的神经解剖基础,但对于人类觉醒的皮层下网络(subcortical networks)的理解依然非常有限。这一认识领域的缺失部分原因在于传统神经影像技术的空间分辨率不足,无法区分脑干内的个别觉醒核(arousal nuclei),也难以描绘脑干与间脑、基底前脑及大脑皮层之间复杂的轴突连接轨迹。 研究来源 该研究由Brian L. Edlow等人撰写,作者隶属于麻省总医院(Massachusetts General Hospital)和哈佛医学院(Harva...

建模分析经济决策领域中依靠机器学习建立理论所使用数据集的偏倚

背景介绍 长期以来,规范性(nomative)和描述性(descriptive)模型一直在试图解释和预测人类在面对商品或赌博等风险选择时的决策行为。最近的一项研究通过训练神经网络(Neural Networks, NNs)在一个新的大规模在线数据集choices13k上,发现了一种更准确的人类决策模型。本研究系统地分析了不同模型和数据集之间的关系,并发现了数据集偏差(dataset bias)的证据。研究表明,数据集choices13k中对随机赌博选择的偏好趋向于平衡,可能反映了增加的决策噪声。通过将结构化的决策噪声添加到使用实验室研究数据训练的神经网络中,我们构建了一个贝叶斯生成模型,并发现该模型表现优于其他除choices13k之外的所有模型。 研究来源 此项研究发表于《Nature H...

使用病历预测现象广泛的疾病发生并支持对新兴健康威胁的快速响应

使用病历预测现象广泛的疾病发生并支持对新兴健康威胁的快速响应 研究背景和动机 新冠疫情暴露了全球系统性、数据驱动指导缺乏的问题,这对识别高风险人群以及应对疫情准备造成了严重影响。个体未来疾病风险评估对于指导预防干预、早期疾病检测和治疗启动至关重要。然而,对于常见疾病,只有一小部分有定制的风险评分,医疗提供者和个人对于大多数相关疾病缺乏指导。即便在有既定风险评分的情况下,对于使用哪种评分和相关的生理或实验室测量也缺乏共识,导致常规医疗实践高度碎片化。特别是在新冠疫情初期,由于缺乏可用数据,无法识别脆弱人群的风险评分不可用。 同时,大多数医学决策,包括诊断、治疗和预防疾病,都是基于个人的医学史。随着数字化的普及,这些信息已经被医疗提供者、保险公司和政府以电子健康记录的形式收集,但由于人类处理和理...

Dimond: 通过深度学习优化扩散模型的研究

Dimond: 通过深度学习优化扩散模型的研究

Dimond: 通过深度学习优化扩散模型的研究 学术背景 在脑科学和临床应用中,扩散磁共振成像(Diffusion Magnetic Resonance Imaging, dMRI)是一种用于非侵入性绘制脑组织微观结构和神经联通性的重要工具。然而,准确估算扩散信号模型参数的计算成本较高,同时易受到图像噪声的影响。现有的多种基于深度学习的有监督估算方法展示了其在提高效率和性能上的潜力,但这些方法通常需要额外的训练数据,并存在泛化性不足的问题。 论文来源 此研究由Zihan Li、Ziyu Li、Berkin Bilgic、Hong-Hsi Lee、Kui Ying、Susie Y. Huang、Hongen Liao和Qiyuan Tian(通讯作者)合作完成,论文发表在《Advanced S...

强化学习中神经网络表示的性质探究

强化学习中神经网络表示的性质探究

传统的表征学习方法通常是设计固定的基函数架构,以达到正交性、稀疏性等期望的性质。而深度强化学习的理念则是,设计者不应编码表征的性质,而是让数据流决定表征的性质,使良好的表征在适当的训练方案下自发涌现。 这项研究探讨了通过深度强化学习系统学习的表征(representation)的性质。此研究将这两种观点结合,通过实证分析,探讨了在强化学习中能够促进迁移的表征所具有的性质。作者提出并测量了六种表征性质,在25000多个代理任务设置中进行了研究。他们使用了带有不同辅助损失的深度Q学习代理,在基于像素的导航环境中进行实验,其中源任务和迁移任务对应于不同的目标位置。 研究人员开发了一种方法,通过系统地变化任务相似性并测量与迁移性能相关的表征性质,从而更好地理解为什么某些表征更适合迁移。他们还证明了该...