BEV-Locator:基于多视角图像的端到端视觉语义定位网络

一项基于多视图图像的端到端视觉语义定位研究 背景与研究意义 随着智能驾驶技术的迅速发展,自动驾驶汽车的精确定位能力成为研究和工业界的热点问题。准确的车辆定位不仅是自动驾驶的核心模块,同时也是高级驾驶辅助系统(ADAS)的重要组成部分。传统的基于视觉定位的方法通常依赖几何模型和复杂的参数调优,但在复杂的场景下,其鲁棒性和大规模部署能力有限。此外,受环境变化(如天气、光照条件等)影响,传统特征提取方法(例如SIFT(尺度不变特征变换)、SURF(加速鲁棒特征)、ORB(方向快速和旋转简要特征)等)在动态环境中表现有限。近年来,带有丰富语义信息的高精度地图(HD Maps, 高精地图)被证明能够增强定位的鲁棒性。然而,如何在多视图图像与语义地图之间实现高效的跨模态匹配,同时避免复杂的几何优化和多阶...

基于Transformer的对象再识别综述

Transformer for Object Re-Identification: A Survey 背景与研究意义 对象重新识别(Object Re-Identification,简称Re-ID)是一项重要的计算机视觉任务,旨在跨时间和场景识别特定对象。这一领域在深度学习技术的推动下取得了显著进展,尤其是基于卷积神经网络(Convolutional Neural Networks,简称CNNs)的研究。然而,随着视觉Transformer的出现,Re-ID研究开启了新的篇章。本文综述了基于Transformer的Re-ID技术,分析其在图像/视频、少数据/少标注、多模态及特殊应用场景中的优势与挑战。 研究团队与发表信息 本文由来自武汉大学、Sun Yat-Sen University和In...

基于Transformer的深度学习网络与时空信息结合的原始EEG分类方法

研究背景及目的 近年来,脑机接口(Brain-Computer Interface,BCI)系统在神经工程和神经科学领域广泛应用,而脑电图(Electroencephalogram,EEG)作为反映中枢神经系统不同神经元群体活动的数据工具,已经成为这些领域中核心的研究内容。然而,EEG信号具有低空间分辨率、高时间分辨率、低信噪比以及个体差异大等特征,这些都为信号处理和准确分类带来了极大的挑战。尤其在运动想象(Motor Imagery,MI)这一EEG-BCI系统常用范式中,准确分类不同MI任务的EEG信号对于BCI系统的功能恢复和康复具有重要意义。 传统的MI-EEG分类方法通常基于手工特征提取和分类,但这些方法可能在特征提取阶段丢失EEG的有用信息。近年来,深度学习模型因其自动特征提取和...