标签分布学习为何在分类中具有更好的泛化性

理解标签分布学习为何在分类中具有更好的泛化性能 背景介绍 在人工智能和机器学习领域,分类问题一直是研究者关注的核心课题之一,随着多标签学习(Multi-label Learning,MLL)和单标签学习(Single-label Learning,SLL)的不断发展,如何有效处理标签之间复杂的关系成为了一项重要挑战。然而,传统的单标签学习模型往往仅关注最相关的标签,而忽略了标签间的模糊性和相关性信息。这种局限性对现实世界中许多复杂任务的解析和解决形成了阻碍。 为了解决这一问题,标签分布学习(Label Distribution Learning,LDL)被提出。与SLL和MLL不同,LDL通过为每个数据实例分配一个标签分布(每个标签分配一个实数值,表示标签的相关程度)来全面刻画实例与标签之间...

基于单片3D IGZO-RRAM-SRAM集成架构实现稳健且高效的计算存储

基于单片集成的三维IGZO-RRAM-SRAM计算存储新架构研究:提高神经网络计算效率的突破 背景与研究动机 随着神经网络(Neural Network, NN)在人工智能领域应用的不断深入,传统计算架构难以满足其在能耗、速度和密度方面的需求。这促使研究者将目光投向计算存储(Compute-In-Memory, CIM)芯片技术。CIM通过将计算单元与存储单元集成在一个架构中,避免大量数据在存储与计算单元间传递的“存储墙”效应,从而显著提高系统效率。已有CIM架构主要基于静态随机存取存储器(Static Random Access Memory, SRAM)、电阻随机存取存储器(Resistive Random Access Memory, RRAM)和氧化铟镓锌(Indium-Galliu...

基于矩阵分数描述的结构化系统的辨识性与参数估计困难度研究

基于有限频率响应的矩阵分式描述结构化系统的可辨识性和参数估计困难度 背景介绍 在科学研究和工程应用中,参数辨识是理解和控制复杂系统的核心任务之一。无论是电力系统、机械系统,还是化学反应动力学模型,准确的参数辨识是优化系统行为、减少误差、提升控制性能的基础。然而,随着系统复杂度的增加,传统的参数辨识方法在处理大规模系统时逐渐失效,尤其是在辨识问题具备高度非线性且数据量庞大的情况下。因此,新的理论和计算方法亟需被开发,以便解决参数辨识过程中遇到的实际挑战。 近年来,参数辨识难度(sloppiness)这一特性研究引起了广泛关注。所谓参数辨识难度是指在辨识过程中,某些参数的变化仅导致很小的系统输出变化,从而使这些参数从实验数据中难以辨识。而这一问题在多变量和非线性系统中尤为显著。然而,现有的方法往...

异构有向多智能体系统的协作输出调节:一种完全分布式的无模型强化学习框架

异构有向多智能体系统合作输出调节问题研究:基于完全分布式无模型强化学习框架 背景介绍 近年来,分布式控制和优化的研究在智能交通、智能电网、分布式能源系统等领域表现出了广泛的应用前景。这类系统通常需要多个智能体的协作完成特定任务,其中基础性研究课题之一便是合作输出调节问题(Cooperative Output Regulation,简称COR)。该问题旨在通过设计合适的控制协议,使得多智能体系统中的所有智能体都能跟踪参考信号并最终实现零跟踪误差。然而,要解决这类问题,准确获知智能体动态模型的信息通常是现有方法的基本前提,这在现实中由于复杂环境和高度耦合的非线性难以实现,甚至可能导致测量成本过高。 此外,由于多智能体系统的通信网络往往具有方向性(即信息传递非对称性),这进一步加大了研究这一问题的...

PLTCRB:基于最优平均通信复杂度的实用分布式随机信标

分布式随机信标(Distributed Randomness Beacon)研究的前沿突破 —— 大规模优化通信复杂度的实用方案 在当今众多技术领域中,可信随机数生成器(Randomness Beacon)是一项关键工具,对密码学、区块链、电子投票及众多应用的安全性具有重要作用。随机数生成器需要满足偏差抗性、不可预测性和公开可验证性。然而,传统的分布式随机信标(Distributed Randomness Beacon,简称DRB)方案通常依赖复杂的通信流程,或借助于公共公告板(Public Bulletin Board,简称PBB)来保障安全性,在参与者规模较大时容易受到性能瓶颈的制约。这一问题促使研究者们寻找更高效、更实用的新方案。 近日,来自上海交通大学电子信息与电气工程学院的Zhey...

二阶非线性多代理系统在受限区域内基于观察器的事件触发时间变化队形跟踪控制方法

多代理系统受限区域内时间变化队形跟踪控制研究综述 多代理系统(Multi-Agent Systems, MAS)的协调与合作控制近年来备受关注,这种兴趣不仅来源于其在多自主水下航行器、多旋翼飞行器等工程领域的广泛应用,也在于其在提升自动化效率、完成复杂任务和减少资源损耗方面的潜力。然而,在复杂和动态的实际环境中,对多代理系统的队形跟踪控制提出了更高的要求,如如何应对外部未知干扰、避免碰撞,以及在受限区域内完成任务。 本文《Observer-based event-triggered formation tracking control for second-order multi-agent systems in constrained region》为此研究领域提供了新的解决方案。这篇论文...