セマンティックセグメンテーションのためのスタック型デコンボリューションネットワーク

セマンティックセグメンテーションのためのスタック型デコンボリューションネットワーク

セマンティックセグメンテーションのためのスタック反畳み込みネットワーク はじめに セマンティックセグメンテーションはコンピュータビジョン分野における重要なタスクであり、画像の各ピクセルを分類してそのカテゴリを予測することを目指しています。しかし、既存の完全畳み込みネットワーク(Fully Convolutional Networks, FCNs)は、空間解像度の処理において制限があり、物体の境界がぼやけたり小さな物体が見逃されたりする問題があります。これらの問題を解決するために、本論文ではセマンティックセグメンテーションの効果を向上させるために、スタック反畳み込みネットワーク(Stacked Deconvolutional Network, SDN)を提案します。 研究背景 深層畳み込み神経...

タグベースのコンテンツ記述子を使用した透過的な深部画像美学評価に向けて

タグベースのコンテンツ記述子を使用した透過的な深部画像美学評価に向けて

タグ内容記述に基づく透明な深層画像美学評価 学術背景 InstagramやFlickrといったソーシャルメディアプラットフォームが普及するにつれ、画像美学評価(Image Aesthetics Assessment, IAA)モデルの需要がますます高まっています。これらのモデルは、ソーシャルネットワークサービス提供者が画像のソートや推薦結果を最適化するのを助けるだけでなく、一般ユーザーがアルバムを管理したり、最適な写真を選んだり、撮影や編集の際にガイダンスを提供します。しかし、オブジェクトや撮影技術など複数の要因を含む画像美学の複雑さから、堅牢なIAAモデルの構築は依然として課題となっています。 研究動機 既存の深層学習法はIAAにおいて高い性能を示していますが、その内部分析が不明瞭です。ほ...

言語間で共有された皮質発語表象によって駆動されるバイリンガル音声神経補綴

大脳皮質発話表現に基づくバイリンガル音声神経義肢 背景 神経義肢の発展の過程では、脳活動から言語をデコードする研究が単一言語のデコードに集中してきました。そのため、バイリンガルによる言語生成が異なる言語の独自または共有された皮質活動にどの程度依存するかはまだ不明です。本研究は、電皮質図(electrocorticography, ECoG)と深層学習および統計的自然言語モデルを組み合わせ、西スペイン語-英語バイリンガル患者の発話運動皮質活動を記録およびデコードし、二つの言語の文に変換します。この研究は、目標言語を手動で指定することなく発話デコードを実現するという実際の応用問題を解決することを目指しています。 言語失声症 (anarthria)、すなわち明瞭な発話能力の喪失は、脳卒中や筋萎縮性...

電子健康記録における健康の社会的決定要因を識別するための大規模言語モデル

大規模言語モデルによる電子健康記録中の健康の社会的決定要因の識別 背景と研究の動機 健康の社会的決定要因(Social Determinants of Health, SDOH)は患者の健康結果に重要な影響を与えます。しかし、電子健康記録(EHR)の構造化データにおいて、これらの要因の記録はしばしば不完全または欠落しています。大規模言語モデル(Large Language Models, LLMs)はEHRの叙述的なテキストからSDOHを高通量で抽出し、研究や臨床ケアを支援することが期待されています。しかし、カテゴリの不均衡やデータの制約が、このまばらな記録の重要な情報に挑戦をもたらします。本稿では、LLMsを用いてEHRの叙述的テキストから6種類のSDOHカテゴリ(雇用、住居、交通、親の身...

キメラ抗原受容体を使用した免疫抑制間葉系ストローマ細胞

キメラ抗原受容体搭載間葉系間質細胞による免疫抑制の強化 背景紹介 間葉系間質細胞(Mesenchymal Stromal Cells, MSCs)は、多能性細胞であり、ほぼ全ての組織に存在し、著しい免疫抑制・再生特性を有する。これらの特性は、免疫疾患および組織再生の治療において、MSCsが広く研究されてきた理由となっている。異種のMSCsの臨床試験はその安全性を示しているが、免疫抑制の効果と治療結果はいまだ満足いくものでない。MSCsの免疫抑制効果を向上させるために、本研究では細胞工学技術を用い、健康な提供者から得た脂肪由来の初期MSCsを改造し、新たな治療戦略を開発した。 論文の出典 本研究はOlivia Sirpilla、R. Leo SakemuraおよびMehrdad Hefaziら...