基于选择性听觉注意力解码的无监督脑机接口准确度估计

基于选择性听觉注意解码的脑机接口无监督准确性估计研究 学术背景 在复杂的听觉环境中,人类能够选择性地关注某一个声音源,而忽略其他干扰声音,这一现象被称为“鸡尾酒会效应”(cocktail party effect)。选择性听觉注意解码(Selective Auditory Attention Decoding, AAD)技术通过分析脑电图(Electroencephalography, EEG)等脑信号,解码出用户正在关注的声音源。这一技术在神经导向助听器(neuro-steered hearing aids)和脑机接口(Brain-Computer Interface, BCI)等领域具有重要应用。然而,当前的AAD算法通常依赖于监督学习,即需要用户明确告知其关注的声音源,以提供“地面真值...

模块化脑机接口用于神经记录、神经刺激和药物递送

模块化脑机接口用于神经记录、神经刺激和药物递送

模块化脑机接口:神经记录、神经刺激与药物递送的创新突破 学术背景 脑机接口(Brain-Machine Interface, BMI)是神经科学与临床医学中的重要工具,能够实现大脑与外部世界之间的电荷、物质与信息交互,广泛应用于神经解码、神经系统疾病的诊断与治疗以及脑科学研究。随着神经科学的发展,多模态脑机接口(multimodal BMI)引起了广泛关注,这类接口能够同时支持神经记录、神经刺激和药物递送等多种功能。然而,现有的多模态脑机接口大多针对特定场景设计,具有高度集成的固定配置,难以适应不同实验需求。 针对这一问题,Sheng等人提出了一种模块化的多模态脑机接口,旨在通过灵活的模块化设计,使脑机接口能够根据不同实验需求调整配置、模态和功能。这种设计不仅提高了设备的适应性,还为需要多种...

人类顶缘回中单神经元对内部语言的表征

《Internal Speech Representation by Single Neurons in Human Supramarginal Gyrus》科学报道 背景介绍 近年来,脑机接口(BMIs, Brain-Machine Interfaces)技术在语音解码领域取得了显著进展。BMIs通过将大脑信号转化为语音或音频输出,使得那些因疾病或损伤失去说话能力的人能够重新交流。然而,尽管在有声语音、尝试语音和模拟语音解码方面取得了重要进展,内在语言(internal speech)的解码研究却相对稀缺且功能性较低。这篇文章旨在解决内在语言解码过程中存在的挑战,尤其是确定从哪些大脑区域能够解码出内在语言。研究的重点是位于顶下小叶(Supramarginal Gyrus,SMG)和初级躯体...

具有注意力机制的时间依赖学习卷积神经网络在运动想象脑电解码中的应用

MI-EEG解码中基于注意力机制的时间依赖学习卷积神经网络(CNN) 研究背景与问题描述 脑机接口(Brain-Computer Interface, BCI)系统提供了一种通过实时翻译大脑信号与计算机进行通信的新途径。近年来,BCI技术逐渐在为瘫痪患者提供辅助和预防性护理方面发挥了重要作用。现有的许多BCI系统依赖于非侵入性且相对便捷的脑电图(EEG)信号记录来追踪大脑活动。然而,即使在同一MI任务期间,不同时期产生不同MI相关模式的时间依赖性特性也往往被忽略,从而大大限制了MI-EEG解码性能。 论文来源与作者信息 论文《A Temporal Dependency Learning CNN with Attention Mechanism for MI-EEG Decoding》于202...

基于小波的时间-频谱-注意力相关系数用于运动想象EEG分类

脑机接口(Brain-Computer Interface, BCI)技术近年来发展迅速,被认为是一种无需通过外周神经和肌肉,仅通过大脑直接控制外部设备的前沿技术。特别是在运动想象(Motor Imagery, MI)脑电图(Electroencephalography, EEG)应用中,BCI 技术展现了巨大的潜力。通过分析MI-EEG信号,可以帮助患有物理障碍或神经肌肉退化的病人提高生活质量。然而,由于个体之间的差异以及大脑活动的稳定性、低信噪比(Signal-to-Noise Ratio, SNR)等因素,如何从复杂的EEG信号中提取有效特征以提高MI-EEG分类系统的准确性,仍然是一个巨大的挑战。 在MI-EEG分类中,特征提取与表示是决定分类性能的关键。当前广泛使用的特征提取方法,...