基于自监督深度学习的扩散张量MRI降噪方法

基于自监督深度学习的扩散张量MRI降噪方法

背景介绍 弥散张量磁共振成像(Diffusion Tensor Magnetic Resonance Imaging,DTI)是一种广泛应用于体内脑组织微结构和白质束成像的神经影像技术。然而,弥散加权图像(Diffusion-Weighted Images, DWI)中的噪声会降低DTI数据所派生出的微结构参数的精度,同时也导致需要更长的采集时间来提高信噪比(Signal-to-Noise Ratio, SNR)。尽管基于卷积神经网络(Convolutional Neural Networks, CNNs)的深度学习方法在图像去噪方面表现突出,但通常需要额外的高信噪比数据来监督CNN的训练,这限制了监督学习方法在去噪中的实际应用。 论文来源 本文标题为“SDnDTI: Self-Superv...

DeepDTI:使用深度学习的高保真六方向扩散张量成像

DeepDTI:使用深度学习的高保真六方向扩散张量成像

DeepDTI:使用深度学习实现高保真六方向扩散张量成像 研究背景及研究动机 扩散张量磁共振成像(Diffusion Tensor Imaging, DTI)在活体人脑组织微结构和结构连接性映射方面具有无可比拟的优势。然而,传统的DTI技术因为角度采样的要求导致扫描时间过长,制约了其在常规临床实践和大规模研究中的应用。为了克服这一瓶颈,研究者们开发了一种新的DTI处理框架,称为DeepDTI,通过数据驱动的监督深度学习最小化DTI的数据需求。本文的目的在于展示如何使用DeepDTI显著减少DTI的采样数据量,从而实现更快的扫描速度,同时保持高质量的成像结果。 论文来源 这篇论文的主要作者包括Qiyuan Tian, Berkin Bilgic, Qiuyun Fan, Congyu Liao...