基于注意力的双尺度融合卷积神经网络用于运动想象脑机接口

基于注意力的双尺度融合卷积神经网络用于运动想象脑机接口

脑机接口(Brain-Computer Interface, BCI)作为一种新增强通信与控制技术近年来逐渐崭露头角。基于电生理特征(如脑电图,EEG)的BCI中,运动想象(Motor Imagery, MI)是一个重要分支,通过解码用户的运动意图用于临床康复、智能轮椅控制、及光标控制等领域。然而,由于EEG信号的复杂性,如低信噪比(Signal-to-Noise Ratio, SNR)、非平稳性、低空间分辨率和高时间分辨率等特点,准确解码运动意图仍具有挑战性。现有的MI基BCI解码主要使用传统机器学习和深度学习方法。传统机器学习通常分为特征提取和特征分类两个独立步骤,方法包括快速傅里叶变换(Fast Fourier Transform, FFT)、通用空间模式(Common Spatial...

通过视觉运动整合任务揭示脑功能网络的变化

机能脑网络在视觉运动任务中的重组变化 研究背景 运动执行是一个复杂的认知功能,依赖于空间上接近和远离的脑区的协调激活。视觉运动整合任务需要处理和解释视觉输入以规划运动执行,并调整人类运动以与环境互动。基于功能性磁共振成像(fMRI)的研究表明,前额叶和顶叶区域在视觉运动整合过程中起着重要作用。此外,sensorimotor皮层也涉及其中。然而,现有研究主要使用fMRI技术探索这些过程,对于脑电图(EEG)信号的研究相对较少。 在诸多研究中,通过功能连接性分析明确了不同脑区之间的统计依赖关系,并研究它们在不同条件下如何相互作用和交流。有研究通过脑磁图(MEG)和颅内EEG探讨了大脑在gamma波段的连接性,发现大脑在视觉运动过程中的动态参与。此外,基于脑电图的研究确认了前顶叶区域在视觉运动过程...

基于EEG信号检测重度抑郁症的图卷积Transformer网络GCTNet

GCTNet:基于EEG信号检测重度抑郁症的图卷积Transformer网络 研究背景 重度抑郁症(Major Depressive Disorder, MDD)是一种普遍的精神疾病,其特征是显著且持续的低落情绪,全球约有超过3.5亿人受到影响。MDD是导致自杀的主要原因之一,每年约有80万人因此丧生。当前MDD的诊断主要依赖于患者的自我报告和临床医生的专业判断。然而,诊断过程的主观性可能会导致不同医生之间的一致性较低,从而可能产生不准确的诊断。研究发现,被诊断为MDD的一般医生的正确率仅为47.3%。因此,探索客观可靠的生理指标,并采用有效的方法及时识别MDD,对于促进早期诊断和干预至关重要。 论文来源 本论文由Beijing Advanced Innovation Center for ...

对侧延迟活动和阿尔法侧化反映视觉记忆中的视网膜和屏幕中心参照系

对侧延迟活动和阿尔法侧化反映视觉记忆中的视网膜和屏幕中心参照系

对《Contralateral Delay Activity and Alpha Lateralization Reflect Retinotopic and Screen-Centered Reference Frames in Visual Memory》的学术报道 引言 视觉系统以侧化的方式组织,左侧和右侧视野由对侧大脑皮层处理。这种组织方式不只适用于感知,还影响认知过程,尤其是对视觉信息的短期记忆。视觉短期记忆(VSTM)中,注意力集中于侧位位置主要调节对侧视觉皮层的活动。近年来,研究表明,视觉短期记忆的对象在对侧半球存储,多个研究显示存储量的神经指标主要在对侧半球。然而,人类频繁的眼动造成记忆对象位置的变动,尤其在眼动后,记忆是根据初始视网膜位还是根据更新的屏幕位置进行的,尚未明确...